

Microencapsulated Probiotics

MICROBAC

the intestinal tract intact, where they can proliferate and express their biological activity (1,2).

Thanks to the barrier effect provided by the coating matrix, this microencapsulation also **significantly improves the stability** of various final product applications, **extending the shelf-life** of particular sensitive dosage forms such as vials, softgels, tablets, capsules and oil suspension. In an in vitro study, the **strong gastro-resistance** conferred by the lipidic microencapsulation to the probiotic cells was highlighted (3).

Improvement in survival rate ("in vitro" study)

Biological fluids	Microencapsulated probiotic compared to the same strain in uncoated form
Real human gastric juice	More than 250% improved survial
Simulated pancreatic secretion	More than 250% improved survial
Organic juices complex (gastric juice, bile and pancreatic secretions)	More than 8 times improved survial

Patented technology

100% Alive to the intestine No damage during gastro-duodenal transit

PROBLEM

To be effective and confer health benefits, **probiotics must be viable until consumer use**. That means that probiotic cells mut **survive during processing and under shelf-life conditions of the finished products**, as well as must **survive passage through the digestive tract**, proliferate and colonize the gut.

Only 20% of traditional, uncoated cells overcome the gastro-duodenal section alive.

SOLUTION

Probiotical has **developed a microencapsulation technology** that coats the probiotic cells in a lipidic vegetable matrix (food grade), providing **more robust probiotics with improved survivability**.

Probiotical's patented technology enables microencapsulated strains to pass safely through the acidic environment of the stomach and reach

Probiotical's microencapsulation technology has also been tested in **two different clinical studies**.

- In the first one, it was demonstrated that colonization was achieved with both microencapsulated and uncoated forms in the same time, although with a dosage 5 times lower for microencapsulated strains (2 billion CFU/ day of microencapsulated bacteria compared to 10 billion CFU/day of the uncoated form) (4).
- In the second clinical study, the in vivo intestinal colonization of the two different forms was assessed, demonstrating that the kinetics of colonization of the two forms (5 billion CFU/die of microencapsulated probiotic strain mix vs 25 billion CFU/die of the same uncoated mix) were totally comparable (5).

The advantages of microencapsulated prodiotics in finished products:

- Colonization efficacy with a five time lower amount of probiotic cells
- Extended shelf life of the finished products
- Possibility to use probiotics even in difficult product matrices

References

 Del Piano M. et al. In Vitro Sensitivity of Probiotics to Human Pancreatic Juice. J Clin Gastroenterol. 2008; 42 (3); S170-173.

2) Charteris WP, et al. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol. 1998; 84 (5):759–768.

3) Del Piano M. et al. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains. J Clin Gastroenterol. 2010 Sep;44 Suppl 1:S42-6.

4) Del Piano M. et al. Is microencapsulation the future of probiotic preparations? The increased efficacy of gastro-protected probiotics. Gut Microbes. 2011 Mar-Apr; (2):120-3

5) Del Piano M. et al. Comparison of the kinetics of intestinal colonization by associating 5 probiotic bacteria assumed either in a microencapsulated or in a traditional, uncoated form. J Clin Gastroenterol. 2012 Oct:46 Suppl:S85-92.

Surfing together the Probiotic Galaxy

probiotical.com