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INTRODUCTION
•	 The presence of tumor-derived genomic alterations in cell-free DNA (cfDNA) circulating 

in the blood of patients with cancer1 has led to development of blood-based assays for 
tumor genomic profiling 

•	 Circulating tumor (ctDNA) is present in many different malignancies, making it 
potentially useful for the early noninvasive detection of cancer (Figure 1)

•	 While current methods relying on deep sequencing of a few genes can detect ctDNA in some 
patients with early-stage cancers,2,3 limited sensitivity has so far precluded their use for 
screening

•	 For detection of tumor derived mutations, it is critical to estimate the tumor fraction 
(ratio of ctDNA to cfDNA) and the tumor variant allele frequency (VAF; fraction of cfDNA 
molecules bearing a mutation known to be present in a tumor). Both tumor fraction and 
VAF vary widely by tumor type and stage4

•	 Aravanis and colleagues5 recently proposed that the advances required to enable a  
ctDNA-based early detection test are around 100x more sequencing coverage, 
improvements in variant interpretation, and sensitivity to VAF of 0.01% or lower

OBJECTIVES
•	 Reanalyze published data on the expected ctDNA allele fraction in early-stage cancer 

and assess the feasibility of ctDNA mutational assays for early cancer detection based 
on their physiologic and economic requirements 

•	 Review alternative biologic signals of early cancer and the potential of machine learning 
to integrate these signals into reliable diagnostics

METHODS 
•	 A binomial model was used to assess depth and input requirements, with parameters 

derived from published data on cfDNA sequencing2

•	 Model parameters: 

–– No more than 5% of samples may fail because of insufficient cfDNA quantity

–– 95% sensitivity to detect one read from any cancer-derived allele, assuming that one 
is present in the sample

–– 50% process efficiency: Half of the cfDNA molecules in the input blood sample are 
represented in the sequencer output

–– 5x oversampling in sequencing for error correction

–– 100% on-target rate in target enrichment

–– “$1000 genome” sequencing costs: US $1000/(30 x 3 Gbp) of sequencing bandwidth

–– Only sequencing costs computed; all other costs (e.g., labor, equipment, facilities, 
depreciation) accounted at $0

–– Panel expansion neither reduces input requirements nor increases sequencing 
requirements

ctDNA Mutation Detection Is Statistically Limited by Input Volume
•	 The binomial model, which analyzed a range of VAFs and sequencing depths, suggested 

that 3000x unique coverage is required for 95% sensitivity at 0.1% VAF, and 30,000x is 
required for 95% sensitivity at 0.01% VAF (Figure 2) 

•	 The model was validated using real-world VAF and unique coverage data reported by  
Phallen et al2 in 190 patients (Figure 3) 

–– No patients were observed below the modeled boundary (95% sensitivity), and 
patients with VAF below 0.1% had higher depth of unique coverage (most >5000) 

–– Depth (the number of molecules assayed) is a significant factor when detecting  
low-frequency mutations 

FIGURE 1. Challenges of ctDNA Mutation Analysis. cfDNA Comprises Short 
DNA Fragments Present in the Blood, and May Include DNA Derived From 
Tumor Cells (ctDNA) and Normal Cells6
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(A) Illustration of the sources of cfDNA and that somatic mutations (open circles) can arise from both tumor and nontumor cells.  
(B) Binomial sampling: a finite-size sample is drawn from the entire population of cfDNA, implying that some samples will contain 
no mutations. Shows 0.01% VAF to scale. (C) Process efficiency: Because no lab process is 100% efficient, some molecules 
present in the input tube may not make it to the sequencer (and therefore the data readout), creating another opportunity for 
dropout of rare variants. (D) Variant interpretation: Although 2 mutations were read out at the end of the process, the mutation 
tissue of origin (healthy or tumor) is indistinguishable in the actual sample, making it difficult to interpret whether the sample 
actually contained a tumor-derived mutation.

FIGURE 2. Binomial Model for ctDNA Sequencing. cfDNA Is Less Frequent in 
Healthy Individuals Than Those With Early-Stage Cancer
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(A) Distribution of cfDNA concentrations observed in healthy individuals and stage I/II cancer patients.2 The green line = 5th 
percentile of the distribution of healthy individuals, cfDNA concentration. (B) Upper bound on sensitivity to detect one mutant 
molecule as a function of sequencing depth and VAF; note logarithmic x-axis. Also shown is the minimum amount of unique DNA 
input required for sequencing, assuming 3 pg haploid genome mass and 100% process efficiency. (C) Sensitivity as a function of 
blood input volume, assuming 2.3 ng cfDNA/mL plasma, plasma volume 55% of blood volume, and 50% process efficiency.

•	 Although it is possible that the patients without detected ctDNA would have had mutant 
alleles detected at greater depth, it is not possible to arbitrarily increase sequencing 
depth because unique coverage is limited by the number of input molecules 

–– 30,000x unique coverage requires at least 30,000 distinct copies of the tested region 
in the input sample

–– Process efficiency (the probability a molecule in an input sample is represented in 
the output) is below 1% for typical sequencing assays,7 which means some molecules 
present in the original sample will be lost during processing 

–– Even with 50-fold improvement in efficiency (50% efficiency), 60,000 input molecules 
would be required to achieve 30,000x unique depth

•	 The model suggests that even with 50-fold improvement in efficiency, 150 mL of blood 
would be required to achieve 95% detection of 0.01% VAF mutations (Figure 2C), which 
is impractical for a general-population screening test

FIGURE 3. Validation of Binomial Model for ctDNA Sequencing 
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FIGURE 4. VAF Is Below 0.01% in a Substantial Fraction of Healthy 
Individuals and Stage I/II Cancer Patients 
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(A) Highest per-patient VAF observed for any cancer-related variant in healthy individuals or patients with stage I/II colorectal, 
breast, ovarian, or lung cancer, as measured by the targeted error correction sequencing (TEC-Seq) protocol.2 Samples listed 
as “ND” had no cancer-derived alleles observed. In patients with multiple cancer alleles detected in plasma, the highest VAF is 
shown. Healthy samples had zero cancer-related variants detected. (B) Highest per-patient VAF observed for any cancer-related 
variant in healthy individuals or patients with stage I/II colorectal, breast, esophageal, liver, ovarian, lung, stomach, or pancreatic 
cancer based on sequencing data from Cohen and colleagues.3 Samples listed as “ND” had no cancer-derived alleles observed 
(50% of stage I/II cancer patients and almost 80% of healthy patients). Variants with an omega score below 1.0 were excluded 
based on the analysis described in Cohen et al.3

ND = not detected.

ctDNA Mutation Detection Is Biologically Limited by Somatic Heterogeneity
•	 As large-scale cancer genomics projects have revealed that most tumors contain 

multiple somatic variants,8 it may be possible to reduce input and sequencing depth 
requirements by detecting any of a large number of tumor-specific mutations rather 
than focusing on one specific mutation (the assumption of the binomial model) 

–– For example, detecting any of 10 independent VAF=0.01% mutations would have the 
same sampling probability as detecting a single 0.1% variant

•	 However, low levels of cancer-associated mutations are observed in healthy individuals9 and 
may increase with age,10,11 which could complicate interpretation when mutations are detected

•	 VAFs observed using sequencing data from Cohen and colleagues3 confirmed that even 
using a stringent filtering threshold such that nearly half of early-stage cancers had 
no detected ctDNA, over 20% of healthy individuals had a low-level “cancer-related” 
mutation (Figure 4) 

•	 To mitigate false positives, many of the detected alleles may need to be filtered out and 
more than one mutation detection event would likely be required

•	 Even successful filtering would imply that the binomial limits derived above are highly 
optimistic

TABLE 1. Assay Requirements and Cost for Tumor Liquid Biopsy and 
Mutation-Based Early Cancer Detection

VAF 95% 
Sensitivity

Corrected 
Depth Raw Depth

Input Volume 
(blood)

Sequencing Cost by Panel Size

TEC-Seq2

58 genes
81 kb

Razavi et al11

508 genes
2000 Kb

WES
≈20k genes
50,000 Kb

Tumor liquid biopsy 0.1% 3000x 15,000x 15 mL $14 $340 $8300

Early cancer detection 0.01% 30,000x 150,000x 150 mL $140 $3400 $83,000
WES, whole exome sequencing.

ctDNA Mutation Detection Is Economically Limited by Sequencing Cost 
•	 Depth requirements from the binomial model enabled estimation of the costs of a 

mutation detection assay 
•	 The input volume required and corresponding sequencing cost of a mutation-calling  

ctDNA-based early detection assay under highly conservative assumptions is estimated  
in Table 1

•	 The model suggests that early detection may be infeasible: 
–– Small panels (e.g., the 81-kb TEC-Seq panel) have achievable sequencing costs, but 
have input volumes of >150 mL of blood, which are likely prohibitive

–– Larger panels (e.g., the 2-Mb panel reported by Razavi et al12) have significantly 
higher sequencing costs ($3400) 

Alternatives to ctDNA Mutation Detection
•	 There are a number of blood-based analytes that may be useful for early cancer 

screening (Table 2)
•	 Computational integration of these multi-analyte signals may provide improved power 

for phenotype classification3

•	 Repeat screening also offers a unique opportunity to improve accuracy with longitudinal 
data on individuals

TABLE 2. Biologic Components Other Than ctDNA With Potential for Cancer 
Screening

Category Analyte Explanation

Tumor-derived material

Tumor-derived proteins 
and RNA3

Protein and RNA are present at higher copy number than 
DNA, potentially enabling detection via nonzero count even 
at low concentration

Exosomes/microvesicles/
circulating tumor cells or 
cell clusters13,14

Tumor-derived bodies may contain macromolecular markers 
in sufficiently high concentration to detect efficiently

Immuno-surveillance

Platelets15
Platelets contain proteins and RNA that function in immune 
signaling pathways, whose composition may vary in the 
presence of cancer

Cytokines, antibodies, 
and other immune 
signaling molecules16,17

Differential cytokine and autoantibody production has been 
observed in cancer patients as a component of the immune 
response to a tumor

Immune cell 
subpopulations18

Differential composition of immune cells may indicate the 
presence of cancer and inform prognosis

Tumor microenvironment  
and host response cfDNA6,19

Patterns in cfDNA beyond sequence variation, including 
epigenetic modifications and fragmentation, may serve as 
a marker for host gene expression

CONCLUSIONS
•	 This analysis demonstrated that for 3 reasons, tests using detection of tumor-derived mutations 

in cfDNA alone are unlikely to achieve the clinical and operational performance characteristics, 
including sensitivity and specificity, required for population screening due to: 

–– Statistical limitations driven by the physiology of cfDNA
–– Biologic limitations driven by recently discovered somatic heterogeneity in healthy tissue 
–– Economic limitations related to the costs and reimbursement for such an assay

•	 Further research using multi-analyte and/or longitudinal analysis methods holds promise 
for the development of clinically useful and economically viable tests for the early 
detection of cancer
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