

Branch Office : 265-A, Lajpat Nagar, Opp. Mission Hospital, Jalandhar

RAISE

(Reynott Academics and Intelligence Scholarship Examination)

SAMPLE PAPER

Class - 12th (NEET)

Syllabus of the Test : Physics, Chemistry & Biology of Class 11th

Time : 2 Hrs.

GENERAL INSTRUCTIONS :

MM : 480

- 1. All questions are compulsory.
- 2. Blank paper, clipboard, log tables, calculators, cellular phones and electronic gadgets in any form are not allowed inside the examination hall.
- 3. Use only Black/Blue Ball Pen for filling the OMR. Do not use Gel/ Ink/ Felt pen as it might smudge the OMR.
- 4. For each right answer you will be **awarded 4 marks** if you darken the bubble corresponding to the correct answer and zero marks if no bubble is darkened. In case of bubbling of incorrect answer, **NO NEGATIVE MARK** will be awarded.
- 5. This Question Paper consists of 90 questions. Please check before starting to attempt. The question paper consists of five Sections, Section-A (Physics: 1 to 30), Section-B (Chemistry: 31 to 60), Section-C (Botany : 61 to 90), Section-D (Zoology : 91 to 120).

	SECTION-A (PHYSICS)						
1.	The unit of Planck's constant is	(B) Joule/s (D) Joule- s (B) $ML^{2}T^{-2}$ (D) $ML^{-1}T^{-1}$ (B) Force and stress (D) Energy and strain ties y and z as follows: x = Ay + B tan (Cz), where A, B and C not have the same dimensions (B) C and z^{-1}					
	(A) Joule	(B) Joule/s					
	(C) Joule/m	(D) Joule-s					
2.	Dimensions of potential energy are						
	(A) MLT ⁻¹	(B) ML ² T ⁻²					
	(C) ML ⁻¹ T ⁻²	(D) ML ⁻¹ T ⁻¹					
3.	Which of the two have same dimensions						
	(A) Force and strain	(B) Force and stress					
	(C) Angular velocity and frequency	(D) Energy and strain					
4.	4. A physical quantity x depends on quantities y and z as follows: x = Ay + B tan (Cz), where A, B and C are constants. Which of the following do not have the same dimensions						
	(A) x and B	(B) C and z^{-1}					
	(C) y and B/A	(D) x and A					
5.	A particle moves along x-axis in such a way that its co	ordinate x varies with time t according to the					
	equation $x = (2 - 5t + 6t^2) m$. The initial velocity of the p	article is					
	(A) – 5 m/s	(B) 6 m/s					
	(C) – 3 m/s	(D) 3 m/s					
6.	When a particle moves with uniform velocity, which of the	ne following relations are correct					
	(I) Average speed = average velocity						
	(II) Instantaneous speed = instantaneous velocity						
	(III) Distance covered = magnitude of displacement						
	(A) I, II, III	(B) I, II					
	(C) II, III	(D) I, III					

Class-11th Studying Moving to Class-12th (NEET)

Sample	Paper for RAISE	Class-11 th Studying Moving to Class-12 th (NEET)
14.	A boy throws a ball with a velocity $V_{_0}$ at an angle α to th with uniform velocity to catch the ball before it hits the group velocity of	e horizontal. At the same instant he starts running round. To achieve this, he should run with a
	(A) $V_0 \cos \alpha$	(B) $V_0 \sin \alpha$
	(C) $V_0 \tan \alpha$	(D) $\sqrt{V_0^2 \tan \alpha}$
15.	An aeroplane is moving with a horizontal velocity u at a h from it the speed of the packet when it reaches the grou	neight h above the ground. If a packet is dropped nd will be
	(A) $(u^2 + 2gh)^{1/2}$	(B) $(2 gh)^{1/2}$
	(C) $(u^2 - 2gh)^{1/2}$	(D) 2 gh
16.	A particle is projected with a speed V from a point O ma instant, a second particle is thrown vertically upwards w	king an angle of 30° with the vertical. At the same ith velocity u from a point A. The two particle reach
	H, the highest point on the parabolic path of particle sim	ultaneously. Then ratio $\frac{v}{u}$ is
	(A) $3\sqrt{2}$	
	(B) $2\sqrt{3}$	
	(C) $\frac{2}{\sqrt{3}}$	
	(D) $\frac{\sqrt{3}}{2}$	O A
17.	A stone is thrown at an angle θ to the horizontal reaches stone is	s a maximum height h. The time of flight of the
	(A) $\sqrt{(2h\sin\theta)/g}$	(B) $2\sqrt{(2h\sin\theta)/g}$
	(C) $2\sqrt{(2h)/g}$	(D) $\sqrt{(2h)/g}$
18.	A cork and a metal bob are connected by a string as sho acceleration towards left then the cork will be thrown tow	own in the figure. If the beaker is given an vards
	(A) Right	(B) Left
	(C) Upwards	(D) Downwards
19.	The action and reaction forces referred in Newton's third	law of motion
	 (A) Must act on the same body (B) Must act on different bodies 	
	 (C) Need not be equal in magnitude but must have the s 	same line of action
	(D) Must be equal in magnitude but need not have the s	ame line of action
20.	A bomb at rest explodes into a large number of tiny frage	nents. The total momentum of all the fragments
	(A) Is zero	
	(B) Depends on the total mass of all the fragments	
	(C) Lepends on the speeds of various tragments (D) Is infinity	

Class-11th Studying Moving to Class-12th (NEET)

21.	Two elastic blocks P and Q of equal mass m are horizontal surface. A third block R of the same m	connected by a massless spring rest on a smooth nass m strikes the block P after this collision P and Q will
	R m	
	(A) Always move in opposite direction	
	(B) Sometimes move in the same direction and s	sometimes move in opposite direction
	(C) Always move in the same direction	
	(D) Be at rest with respect to each other	
22.	If a body of mass m is carried by a lift moving wit body are (i) the reaction R on the floor of the lift u downwards. The equation of motion will be given	h an upward acceleration a, then the forces acting on the pwards (ii) the weight mg of the body acting vertically by
	(A) R = mg – ma	(B) R = mg + ma
	(C) R = ma – mg	(D) R = mg
23.	Two masses of 5 kg and 10 kg are connected to system ($q = acceleration due to gravity$)	a pulley as shown. What will be the acceleration of the
	5kg	
	(A) g	(B) $\frac{g}{2}$
	(C) $\frac{1}{3}$	(D) $\frac{2}{4}$
24.	Statement-1 : If the rectangular components of a	force are 8 N and 6 N, then the magnitude of the force is
	10 N. Statement-2 : If $ \vec{A} = \vec{B} = 1$ then $ \vec{A} \times \vec{B} ^2$	$+ \vec{A}.\vec{B} ^2=1.$
	(A) Statement-1 is True, Statement-2 is Statement-1	True; Statement-2 is a correct explanation for
	(B) Statement-1 is True, Statement-2 is True; State	ateent-2 is NOT a correct explanation for Statement-1
	(C) Statement-1 is True, Statement-2 is False	
	(D) Statement-1 is False, Statement-2 is True	
25.	A particle moves from position $\overline{\mathbf{r}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 6\hat{\mathbf{k}}$ to	position $\overline{\mathbf{f}}_2 = 14\hat{\mathbf{i}} + 13\hat{\mathbf{j}} + 9\hat{\mathbf{k}}$ under the action of force
	$4\mathbf{i} + \mathbf{j} + 3\mathbf{k}\mathbf{N}$. The work done will be	
	(A) 100 J	(B) 50 J
	(C) 200 J	(D) 75 J
26.	A body of mass 3 kg is under a force which caus	es a displacement in it given by $S = \frac{t^2}{3}$ (in m) find the
		(B) 38.I
	(C) 5.2 J	(D) 2.6 J

Sample Paper for RAISE Class-11th Studying Moving to Class-12th (NEET) A body is lifted over route I and route II such that force is always tangent to the path. Coefficient of friction 27. is same for both the paths. Work done (A) On both routes is same (B) On route I is more (C) On route II is more (D) On both routes is zero The force on a particle varies as $F = \frac{9}{x^2}$. The work done in displacing the particle from x = 1 to x = 3 is 28. (A) 4 J (B) 3J (C) 5 J (D) 6 J The displacement x of a particle of mass m kg moving in one dimension, under the action of a force, is 29. related to the time t by the equation $t = \sqrt{x+3}$ where x is in metres and t is in seconds. The work done by the force in the first six second in joules is (A) 0 (B) 3m (C) 6m (D) 9m The velocity of a particle moving along a line varies with distance as $y = a\sqrt{x}$ where a is a constant. The 30. work done by all forces when the particle moves from x = 0 to x = L (metre) is (mass of the particle is m) (A) 0 (B) $ma^{2}L$ (C) $\frac{1}{2}$ ma²L (D) $\frac{1}{3}$ maL SECTION-B (CHEMISTRY) 31. Which of the following compound does not follow octet rule? (B) PCl_a $(A) CO_{2}$ (C) ICI (D) CIF₃. 32. When two atoms combine to form a molecule (A) energy released (B) energy absorbed (C) energy is neither released nor absorbed (D) energy may either absorbed or released Lattice energy of an ionic compound depends upon 33. (A) Charge on the ion and size of the ion (B) Packing of ions only (C) Size of the ion only (D) Charge on the ion only Which of the following have been arranged in increasing order of bond order as well as bond dissociation 34. energy? (A) $O_2^{-2} < O_2^{-1} < O_2^{+1} < O_2^{-1}$ (B) $O_2^{-2} < O_2^{-1} < O_2 < O_2^{+1}$ (C) $O_2 < O_2^+ < O_2^{2-} < O_2^{-1}$ (D) $O_2^+ < O_2^{2-} < O_2^- < O_2^-$ 35. Combination of two AO's lead to the formation of (A) two MO's (B) one MO (C) three MO's (D) four MO's 36. Consider following acid $\mathsf{CICH}_2\mathsf{COOH},\quad\mathsf{CH}_3\mathsf{COOH},\,\mathsf{CH}_3\mathsf{CH}_2\mathsf{COOH}$ Π Ш I Correct order of theIr pH value. (A) III < II < I (B) I < II < III (C) I < III < II (D) II < I < III

37.	When 2 g of a gas 'A' is introduced into an evacuated flask kept at 25°C, the pressure is found to be 1 atm. If 3 g of another gas 'B' is then added to the same flask, the total pressure becomes 1.5 atm. Assuming ideal gas behaviour, calculate the ratio of molar masses $M_A : M_B$				
	(A) 1:3	(B) 1:4			
	(C) 4 : 1	(D) 3:1			
38.	380 mL of a gas at 27°C, 800 mm of Hg weights 0.455	g. The mol. wt. of gas is :			
	(A) 27	(B) 28			
	(C) 29	(D) 30			
39.	KE per unit volume of an ideal gas is				
	(A) $\frac{3P}{2}$	(B) $\frac{3}{2}$ (RT)			
	(C) $\frac{3}{2}\left(\frac{\text{RN}}{\text{N}_0}\right)$	(D) $\frac{3}{2}\left(\frac{\text{RT}}{\text{N}}\right)$			
40.	IP_2 for an element is invariably higher than IP_1 because				
	(A) The size of cation is smaller than its atoms	(B) It is difficult to remove e from cation			
	(C) Effective nuclear charge is more for cation	(D) All the above			
41.	The electron affinity order for halogen is				
	(A) F < Cl < Br < l	(B) F > Cl < Br < l			
	(C) F < Cl > Br > l	(D) F > Cl > Br > l			
42.	The size of ionic species is correctly given in the order				
	(A) Cl ⁷⁺ > Si ⁴⁺ > Mg ²⁺ > Na ⁺	(B) Na⁺ > Mg²⁺ > Si⁴⁺ > Cl ^{7⁺}			
	(C) Na ⁺ > Mg ²⁺ > Cl ⁷⁺ > Si ⁴⁺	(D) Cl ⁷⁺ > Na ⁺ > Mg ³⁺ > Si ⁴⁺			
43.	What is the correct order of electronegativity				
	(A) $M^{+1} < M^{+2} < M^{+3} < M^{+4}$ (C) $M^{+1} < M^{+2} > M^{+3} < M^{+4}$	(B) $M^{+1} > M^{+2} > M^{+3} > M^{+4}$ (D) $M^{+4} < M^{+2} < M^{+3} < M^{+1}$			
44.	Among LiCl, $BeCl_2$, BCl_3 and CCl_4 the covalent bond ch	aracter follows the order			
	(A) LiCl > $BeCl_2 > BCl_3 > CCl_4$	(B) $LiCl < BeCl_2 < BCl_3 < CCl_4$			
	(C) LiCl > $BeCl_2 > CCl_4 > BCl_3$	(D) $BeCl_2 > LiCl > BCl_3 > CCl_4$			
45.	The IUPAC name of the compound $CH_3CH = CHCH = C$	$CHC = CCH_3$ is :			
	(A) 4,6-octadiene-2-yne	(B) 2, 4-octadiene-6-yne			
	(C) 2-octyn-4, 6-diene	(D) 6-octyn-2, 4-diene			
46.	0.5 mole of H_2SO_4 is mixed with 0.2 mole of Ca (formed is	OH) $_2$. The maximum number of moles of CaSO $_4$			
	(A) 0.2	(B) 0.5			
	(C) 0.4	(D) 1.5			
47.	The vapour density of gas A is four times that of B. of A is	If molecular mass of B is M, then molecular mass			
	(A) M	(B) 4M			
	(C) $\frac{M}{4}$	(D) 2M			

Sample	Paper for RAISE	Class-11 th Studying Moving to Class-12 th (NEET)
48.	Total no. of atoms in 44 gm of CO ₂ is	
	(A) 6.02×10^{23}	(B) 6.02×10^{24}
	(C) 1.806 × 10 ²⁴	(D) 18.06 × 10 ²²
49.	The mass of 70% pure H ₂ SO ₄ required for neutralis	ation of 1 mol of NaOH
	(A) 49 gm	(B) 98 gm
	(C) 70 gm	(D) 34.3 gm
50.	How many moles of magnesium phosphate, $Mg_3(PO_4)_2$	₂ will contain 0.25 mole of oxygen atoms?
	(A) 3.125 × 10 ^{−2}	(B) 1.25 × 10 ^{−2}
	(C) 2.5×10^{-2}	(D) 0.02
51.	The IUPAC name of the structure is:	
	$H_2N - CH - CH - CHO$	
	(A) 3-amino-2-formyl butane-1, 4-diolc acid	(B) 3-amino-2, 3-dicarboxy propanal
50	(C) 2-amino-3-tormyi butane-1, 4-dioic acid	(D) 1-amino-2-formyl succinic acid
52.	Steam distillation is a better method of purification f	OrCompounds-
	(A) Liquids	(B) Missible with water
52	(C) Non-volatile	(D) Misciple with water
53.	In which orbit of the hydrogen atom is the speed of the (A) $n = 2$	
	(A) $\Pi = 2$	(B) $n = 1$
54	(c) $n = 3$	(D) $\Pi = 4$
54.	(A) principal quantum number	(B) velocity of the electron
	(C) energy of the electron	(D) frequency of its revolution
55	The number of electrons in sulphur atom having $n + l =$	3
	(A) 2	(B) 4
	(C) 6	(D) 8
56.	The orbital angular momentum of an electron in 2s-orbit	al is
	(A) h/4p	(B) zero
	(C) h/2p	
		(D) $\sqrt{2n}/2\pi$
57.	I he ratio of energy of the electron in ground state of hy	drogen to the electron in first excited state of Be ⁺³ is (2)
	(A) 4:1	(B) 1:4
50		(D) 8:1
58.	Heterolytic fission of carbon-chlorine bond produces:	
	(A) two free radicals	(B) two carbonium ions
50	(C) two carbonions	(D) one cation and one amon
59.	The energy of a photon having wavelength 700 him is $(A) = 1.77 \text{ eV}$	(P) 2 47
		$(D) 2.47 \in V$
60	The law of conservation of mass holds good for all o	of the following except
	(A) All chemical reactions	(B) Nuclear reactions
	(C) Endothermic reactions.	(D) Exothermic reactions.

l

	SECTION-C (BOTANY)					
61.	Mannitol is the stored food in					
	(A) Chara	(B) Poryphyra				
	(C) Fucus	(D) Gracillaria				
62.	Bryophytes are called amphibians of plant kingdom bec	ause				
	(A) They need a layer of water for reproduction	(B) They are found in mostly aquatic condition	lition			
	(C) They have vascular tissues	(D) All of these				
63.	In the five kingdom classification, Chlamydomonas and	Chlorella have been included in				
	(A) Protista	(B) Algae				
	(C) Plantae	(D) Monera				
64.	An alga which can be employed as food for human bein	g is				
	(A) Ulothrix	(B) Chlorella				
	(C) Spirogyra	(D) Polysiphonia				
65.	The basic unit of classification is					
	(A) Species	(B) Genus				
	(C) Family	(D) Phylum				
66.	The photosynthetic or assimilatory roots are observed ir	1				
	(A) Banyan	(B) Vanda				
	(C) Cuscuta	(D) Tinospora				
67.	A horizontal underground stem is a					
	(A) Corm	(B) Phylloclade				
	(C) Rhizome	(D) Rhizoid				
68.	An example of false fruit is					
	(A) Apple	(B) Banana				
	(C) Grapes	(D) Mango				
69.	Stems modified into flat green organs performing the fur	iction of leaves are known as				
	(A) Cladodes	(B) Phyllodes				
70	(C) Phyllociades	(D) Scales				
70.	(A) Collepshime					
	(A) Collenchyma	(D) Yulom peropehyma				
71	(C) Filloeni					
' '.		(B) Pinocytosis				
	(C) Phagocytosis	(D) None of these				
72	A cell swells up when kept in					
, 2.	(A) Isotonic solution	(B) Hypertonic solution				
	(C) Hypotonic solution	(D) Any of these				
73.	Cell theory was proposed by					
	(A) Virchow	(B) Schleiden and schwann				
	(C) Robert Hooke	(D) B. Mc Clintock				
74.	Plasmodesmata are					
	(A) Lignified cedmented layers between cells					
	(B) Locomotory structures					
	(C) Membranes connecting the nucleus and plamalemn	na				
	(D) Connections between adjacent cells					

Sampl	e Paper for RAISE	Class-11 th Studying Moving to Class-12 th	(NEET) י
75.	Middle lamella is mainly composed of		
	(A) Hemicellulose	(B) Muramic acid	
	(C) Calcium pectate	(D) Phosphoglycerides	
76.	Acid hydrolases are found in		
	(A) Golgi body	(B) ER	
	(C) Lysosomes	(D) Vacuole	
77.	The phenomenon of plasmolysis is evedent when ce	lls are kept in	
	(A) Hypotonic solution	(B) Hypertonic solution	
	(C) Isotonic solution	(D) None of these	
78.	Which of these is wrongly matched?		
	(A) Chloroplasts - chlorophyll	(B) Elaioplasts - starch	
	(C) Chromoplats - carotenoids	(D) Amyloplasts - carbohydrates	
	(E) Aleuroplasts - proteins		
79.	Cell theory is not applicable for		
	(A) Bacteria	(B) Fungus	
	(C) Algae	(D) Virus	
80.	Cells divide and new cells are formed from pre-exist	ng cells. This concept was given by	
	(A) Malthias schleiden	(B) Theodore schwann	
	(C) Malthias schleiden & T. Schwann	(D) Rudolf Virchow	
81.	Na $^{+}$ K $^{+}$ pump in a cell is an example of		
	(A) Osmosis	(B) Diffusion	
	(C) Passive transport	(D) Active transport	
82.	Term plasmalemma was given by		
	(A) Strasburger	(B) Plowe	
	(C) Hooke	(D) Robertson	
83.	Spindle fibres are made up of		
	(A) Tubulin	(B) Humulin	
	(C) Intermediate filament	(D) Flagellin	
84.	Main protein of mitotic spindle fibres is		
	(A) Tubulin	(B) Myosin	
	(C) Tropomyosin	(D) Dynein	
85.	Crossing over occurs in		
	(A) Zygotene	(B) Leptotene	
	(C) Pachytene	(D) Deplotene	
86.	In Meiosis, the chromosomes replicate during		
	(A) Prophase	(B) Metaphase	
	(C) Anaphase	(D) Interphase	
87.	Chromosomes are visible with chromatids at one of	he following phases of mitosis	
	(A) Interphase	(B) Prophase	
	(C) Metaphase	(D) Anaphase	
88.	Synapsis occurs between		
	(A) A male and a female gamete	(B) mRNA and ribosomes	
	(C) Spindle fibres and centromere	(D) Two homologous chromosomes	

L

89.	Variations appear during meiosis due to	
	(1) Independent assortment	
	(2) Crossing over	
	(3) Linkage	
	(4) Glycolysis	
	(A) 1, 2 and 3 are correct	(B) 1 and 2 are correct
	(C) 2 and 4 are correct	(D) 1 and 3 are correct
90.	Mitosis is	
	(1) Reduction in chromosome number	
	(2) Karyokinesis	
	(3) Formation of four daughter nuclei	
	(4) Cytokinesis	
	(A) 1, 2 and 3 are correct	(B) 1 and 2 are correct
	(C) 2 and 4 are correct	(D) 1 and 3 are correct
	SECTION-D (ZC	OOLOGY)
91.	In some animal groups, the body is found divided into com This characteristic feature is named	partments with at least some organs/ organ repeate(D)
	(A) Segmentation	(B) Metamerism
	(C) Metagenesis	(D) Metamorphosis
92.	Which one of the following sets of animals share a four of	chambered heart?
	(A) Amphibian, Reptiles, Birds	(B) Crocodiles, Birds, Mammals
	(C) Crocodiles, Lizards, Turtles	(D) Lizards, Mammals, Birds
93.	Which one of the following sets of animals belong to a s	single taxonomic group?
	(A) Cuttlefish, Jellyfish, Silverfish, Dogfish, Starfish	(B) Bat, Pigeon, Butterfly
	(C) Monkey, Chimpanzee, Man	(D) Silkworm, Tapeworm, Earthworm
94.	Which one of the following is oviparous?	
	(A) Platypus	(B) Flying fox (Bat)
	(C) Elephant	(D) Whale
95.	Body cavity is the cavity present between body wall and by mesoderm. Such animals are called	l gut wall. In some animals the body cavity is not lined
	(A) Acoelomate	(B) Pseudocoelomate
	(C) Coelomate	(D) Haemocoelomate
96.	Match the column A with column B and choose the corr	rect option
	Column A	Column B
	A. Porifera	i. Canal system
	B. Aschelminthes	ii. Water-vascular system
	C. Annelida	iii. Muscular Pharynx
	D. Arthropoda	iv. Jointed appendages
	E. Echinodermata	v. Metameres
	(A) A-ii, B-iii, C-v, D-iv, E-i	(B) A-ii, B-v, C-iii, D-iv, E-i
	(C) A-i, B-iii, C-v, D-iv, E-ii	(D) A-i, B-v, C-iii, D-iv, E-ii

Sample	Paper for RAISE		Class-11 th Studying Moving to Class-12 th (NEET)
97.	Which one of the following types of cell is involved in mal	king	of the inner walls of large blood vessels?
	(A) Cuboidal epithelium	(B)	Columnar epithelium
	(C) Squamous epithelium	(D)	stratified epithelium
98.	Which one of the following is not a connective tissue?		
	(A) Bone	(B)	Cartilage
	(C) Blood	(D)	Muscles
99.	Setae help in locomotion in earthworm but not uniform following that represents setae.	nly p	present in all the segments. Select among the
	(A) 1 st segment	(B)	Last segment
	(C) Clitellar segment	(D)	20th - 22nd segment
100.	Which one of the following statements is true for cockroa	ach?	
	(A) The number of ovarioles in each ovary are ten.	(B)	The larval stage is called caterpillar
	(C) Anal styles are absent in females	(D)	They are ureotelic
101.	Match the following with reference to Cockroch and choo	ose t	he correct option
	A. Phallomere	i.	Chain of developing ova
	B. Gonopore	ii.	Bundles of sperm
	C. Spermatophore	iii.	Opening of the ejaculatory dust
	D. Ovarioles	iv.	The external genitalia
	Options:		
	(A) A-iii, B-iv, C-ii, D-i	(B)	A-iv, B-iii, C-ii, D-i
	(C) A-iv, B-ii, C-iii, D-i	(D)	A-ii, B-iv, C-iii, D-i
102.	Match the followings and choose the correct answer		
	A. Touch	î.	Nasal epithelium
	B. Smell	ii.	Foramen magnum
	C. Cranial nerves	iii.	Sensory papillae
	D. Medulla oblongata	iv.	Peripheral nervous system
	Options:		
	(A) A-iii, B-i, C-ii, D-iv	(B)	A-ii, B-i, C-iv, D-iii
	(C) A-iii, B-iv, C-ii, D-i	(D)	A-iii, B-i, C-iv, D-ii
103.	Many elements are found in living organisms either free or found in living organisms.	in th	ne form of compounds. One of the following is not,
	(A) Silicon	(B)	Magnesium
	(C) Iron	(D)	Sodium
104.	When we homogenise any tissue in an acid the acid solu	uble	pool represents
	(A) Cytoplasm	(B)	Cell membrane
	(C) Nucleus	(D)	Mitochondria
105.	The most abundant chemical in living organisms could be	е	
	(A) Protein	(B)	Water
	(C) Sugar	(D)	Nucleic acid
106.	A homopolymer has only one type of building block called m has more than one type of monomer. Proteins are heter like DNA or RNA is made of only 4 types of nucleotide m	iono opoly onoi	mer repeated 'n' number of times. A heteropolymer /mers made of aminoacids. While a nucleic acid mers, proteins are made of
	(A) 20 types of monomers	(B)	40 types of monomers
	(C) 3 types of monomers	(D)	only one type of monomer

107.	Glycogen is a homopolymer made of		
	(A) Glucose units) Galactose u	nits
	(C) Ribose units) Aminoacids	
108.	A pure protein should normally have		
	(A) Two ends) One end	
	(C) Three ends) No ends	
109.	Select what is not true of intestinal villi among followings		
	(A) They possess microvilli		
	(B) They increase the surface area		
	(C) They are supplied with capillaries and the lacteal ve	s	
	(D) They only participate in digestion of fats		
110.	One of the following is not a common disorder associate	ith digestive s	ystem
	(A) Tetanus) Diarrhoea	
	(C) Jaundice) Dysentery	
111.	Match the two columns and select the correct among op	is given	0
	Column I	olumn II	
	A. Biomacromolecules of food	Alimentary c	anal and associated gland
	B. Human digestive system	Embedded in	n jawbones.
	C. Stomach	Outer wall of	visceral organs
	D. Thecodont	Converted in	to simple substances
	E. Serosa	J-shaped ba	g like structure
	Options:		
	(A) A-ii, B-i, C-v, D-iii, E-iv	A-iv, B-i, C-v	, D-ii, E-iii
	(C) A-i, B-ii, C-iii, D-iv, E-v) A-i, B-iii, C-ii	, D-iv, E-v
112.	Match the two columns and select the right one among o	ons given	
	Column I	olumn II	
	A. Duodenum	A cartilagino	us flap
	B. Epiglottis	Small blind s	
	C. Glottis	'U' shaped st	ructure emerging from the stomach
	D. Caecum	Opening of v	/ind pipe
	(A) A-I, B-II, C-III, D-IV) A-IV, B-III, C-	
110	(C) A-III, B-I, C-IV, D-II) A-11, B-1V, C-1	, D-III
113.	(A) Motabaliam of earbahydrate	Digestion of	
	(A) Metabolish of carbonydrate) Digestion of	ial
111	(C) Formation of bile		normone called gastri
114.	(A) Trypsingen is an inactive enzyme		is secreted by intestinal mucosa
	(C) Enterokinase is secreted by nancrease) Rile contains	s trynsin
115	Respiration in insects is called direct because		
	(A) The tissues exchange O / CO directly with the air in	e tubes	
	(B) The tissues exchange O / CO directly with coelomi	id	
	(C) The tissues exchange O / CO directly with the air of	 de through bog	dv surface
	(C) The tissues exchange O_2 / CO_2 directly with the air o	de inrougn boo	by surface

(D) Tracheal tubes exchange O_2/CO_2 directly with the haemocoel which then exchange with tissues

Sample Paper for RAISE

I

116.	A person suffers punctures in his chest cavity in an accie be	dent, without any damage to the lungs its effect could
	(A) Reduced breathing rate	(B) Rapid increase in breathing rate
	(C) No change in respiration	(D) Cessation of breathing
117.	A person breathes in some volume of air by forced inspir	ation after having
	a forced expiration. This quantity of air taken in is	
	(A) Total lung capacity	(B) Tidal volume
	(C) Vital capacity	(D) Inspiratory capacity
118.	Incidence of Emphysema – a respiratory disorder is hig	h in cigarette smokers. In such cases
	(A) The bronchioles are found damaged	(B) The alveolar walls are found damaged
	(C) The plasma membrane is found damaged	(D) The respiratory muscles are found damaged
119.	Identify the correct and incorrect match about respirator	y volume and capacities and mark the correct answer
	i. Inspiratory capacity (IC) = Tidal Volume + Residual	Volume
	ii. Vital Capacity (VC) = Tidal Volume (TV) + Inspiratory	Reserve Volume (IRV) + Expiratory Reserve Volume
	(ERV).	
	iii. Residual Volume (RV) = Vital Capacity (VC) – Inspir	ratory Reserve Volume (IRV)
	iv. Tidal Volume (TV) = Inspiratory Capacity (IC) – Inspi	iratory Reserve Volume (IRV)
	Options:	
	(A) (i) Incorrect, (ii) Incorrect, (iii) Incorrect, (iv) Correct	
	(B) (i) Incorrect, (ii) Correct, (iii) Incorrect, (iv) Correct	
	(C) (i) Correct, (ii) Correct, (iii) Incorrect, (iv) Correct	
	(D) (i) Correct, (ii) Incorrect, (iii) Correct, (iv) Incorrect	
120.	The oxygen - haemoglobin dissociation curve will show	a right shift in case of
	(A) High pCO ₂	(B) High pO ₂
	(C) Low pCO_2	(D) Less H+ concentration

Branch Office : 265-A, Lajpat Nagar, Opp. Mission Hospital, Jalandhar

RAISE

(Reynott Academics and Intelligence Scholarship Examination)

SAMPLE PAPER

Class - 12th (NEET)

ANSWER KEY

1.	(D)	25.	(A)	49.	(C)	73.	(B)	97.	(C)
2.	(B)	26.	(D)	50.	(A)	74.	(D)	98.	(D)
3.	(C)	27.	(A)	51.	(C)	75.	(C)	99.	(D)
4.	(D)	28.	(D)	52.	(B)	76.	(C)	100.	(C)
5.	(A)	29.	(A)	53.	(B)	77.	(B)	101.	(B)
6.	(A)	30.	(C)	54.	(A)	78.	(B)	102.	(D)
7.	(D)	31.	(D)	55.	(D)	79.	(D)	103.	(A)
8.	(A)	32.	(A)	56.	(B)	80.	(D)	104.	(A)
9.	(B)	33.	(A)	57.	(B)	81.	(D)	105.	(B)
10.	(C)	34.	(B)	58.	(D)	82.	(B)	106.	(A)
11.	(B)	35.	(A)	59.	(A)	83.	(A)	107.	(A)
12.	(B)	36.	(B)	60.	(B)	84.	(A)	108.	(A)
13.	(C)	37.	(A)	61.	(A)	85.	(C)	109.	(D)
14.	(A)	38.	(B)	62.	(A)	86.	(D)	110.	(A)
15.	(A)	39.	(A)	63.	(B)	87.	(C)	111.	(B)
16.	(C)	40.	(D)	64.	(B)	88.	(D)	112.	(C)
17.	(C)	41.	(C)	65.	(A)	89.	(B)	113.	(D)
18.	(B)	42.	(B)	66.	(D)	90.	(C)	114.	(A)
19.	(B)	43.	(A)	67.	(C)	91.	(B)	115.	(D)
20.	(A)	44.	(B)	68.	(A)	92.	(B)	116.	(D)
21.	(C)	45.	(B)	69.	(B)	93.	(C)	117.	(A)
22.	(B)	46.	(A)	70.	(B)	94.	(A)	118.	(B)
23.	(C)	47.	(B)	71.	(B)	95.	(B)	119.	(B)
24.	(B)	48.	(C)	72.	(C)	96.	(C)	120.	(B)