
1

ROAMpayX Web App

Integration Guide

Android ONLY

Version 2.3
April 2021

2

© 2021 Ingenico. All rights reserved.
The content of this document and the products, services and solutions detailed therein
are copyrighted and all rights are reserved by Ingenico. The information in these
materials is subject to change without notice, and Ingenico assumes no responsibility
for any errors that may appear herein. The references in these materials to specific
platforms supported are subject to change.

This document is intended only for its designated recipients. Reproduction or posting of
this document without the prior written approval of Ingenico is prohibited.

3

Revision History

Version
Number

Revision Date Revision Description

v1.0 8//2019 Initial release.

v1.1 9/2019 Added targeted_platform in the Security Token API Request.

v2.0 1/2020 Includes detailed descriptions of all required API calls, updated workflow
diagram & direct link to mPOS SDK documentation. Minor revisions
included throughout.

v2.1 2/2020 Added details for Device Serial Number based login.

v2.2 2/2020 Added example for Partial Auth, Decline & Reversal.

v2.2.1 2/2020 Updated Code Snippet in Section 3_4

v2.2.2 3/2020 Added example for Retrieving a Transaction Response JSON via Intent
Added Example for Response to Pre-Login errors
Updated Invalid or Expired Session Return Code to 4995

v2.2.3 4/2020 Added introductory section 1_2, as well as updated parameter
information for starting a payment and code snippets in Section 3_4.

v2.3 4/2021 Added support for tenderType to allow manually-entered and cash
transactions.

4

Table of Contents

1 Introduction .. 5

1_1 What is Deeplink? .. 5

1_2 Requirements ... 6

2 Integration .. 7

3 Transaction .. 8

3_1 Session Token ... 8

3_2 Auth Token ... 10

3_3 Starting a Payment .. 12

3_4 Handle Transaction Response .. 14

3_5 Error Messages .. 21

5

1 Introduction

The objective of this document is to provide the necessary steps for getting started with payment

acceptance using ROAMpay X (RPX). Deeplink functionality allows native Android or web applications to

utilize RPX for payment processing using supported Ingenico devices.

1_1 What is Deeplink?

RPX Deeplink is a secured, simplified and seamless method for card acceptance with authenticated third-
party applications. Deeplink provides a semi-integrated mode through the RPX mobile application to allow
an authenticated third-party app to integrate with RPX through use of Inter-App Deeplinking methodology.

UseCase : ISVs with their own mobile POS app can use RPX Deeplink for an easier, simpler and quicker
option to add payment acceptance functionality from within their own app – minus the overheads of
development, testing and subsequent publishing for deployment of new versions.

UseCase : ISVs with only a website/portal will be able to leverage RPX Deeplink to accept Card-Present
transactions without requiring the development of a mobile application.

Deeplink:

• Eliminates implementing support for the underlying mPOS SDK for Native mobile apps.

• Drives Card-Present interactions from an authenticated Web App using a mobile browser – no

mobile app needed.

• Manages device (reader, printer, etc.) connectivity and reader firmware upgrades.

• Provides speedier and easier implementation of payment acceptance.

• Supports an iterative approach to add feature when required.

Figure 1: Deeplink vs mPOS SDK Integration

6

1_2 Requirements

• Android device must be running Android 5.0 (API 21) or higher

• Android device must have Google Play services v16.0.0 or higher installed

• Android device must have Locked bootloader

• Android device must be unrooted

• Android Device must have a stock ROM

Figure 2: Deeplink Transaction Workflow

7

2 Integration

1. Before you begin integrating with RPX for deep link support, you must first contact Ingenico API

Support to set up:

a. a user account,

b. application token,

c. preferred login strategy used by ROAMpay X, and

d. register callback URL and shared secret (used for posting transaction response for the

payment processed through ROAMpay X).

This can be done on our Ingenico Service Desk portal available here. Once you have registered a

callback URL and obtained an application token, you can proceed with integration with next

steps.

2. Acquire the APK files from Ingenico (these files must be downloaded directly from mobile device).

https://ingenico-servicedesk.roamdata.com/servicedesk/customer/portal/1

8

3 Transaction

3_1 Session Token

Using the Ingenico Authorization REST API, log into the system with the username and password to

retrieve a session (Authorization) token. In order to begin utilizing Ingenico services, you must first log in

and retrieve a session token. This is performed by passing the request as shown below.

 Headers

Parameter Required Description

X-Roam-Key Yes

Application token that identifies the request origin. This
key is unique to every client, as well as every environment.
If you do not have an application token, please contact API
Support here.

X-Roam-ApiVersion Yes Version of the API being used (e.g., 2.0.0).

X-Roam-ClientVersion Yes
Client version (can vary by application). This is set by
developers (e.g., 1.0.0).

Content-Type Yes Content type (e.g., application/json).

 Request

Parameter Required Description

user_name Yes User’s unique identifier for logging in.

password Yes User’s password.

Request URL:

 https://mcm.roamdata.com/wsapi/Authentication

Request Headers

 X-Roam-Key: <Application token>

 X-Roam-ApiVersion: 2.0.0

 X-Roam-ClientVersion: 1.0

 Content-Type: application/json

Headers

https://ingenico-servicedesk.roamdata.com/servicedesk/customer/portal/1

9

If the request is successful, you should receive a response entailing account details. Most importantly,

this will return the session object, which is defined below.

 Response

 (session Object)

Parameter Required Description

expires Yes
Timestamp of when the session token expires

 (yyyymmddhhmmss)

session_token Yes Unique session token used for every subsequent API call.

{

 "user_name" : <username>,

 "password" : <password>

}

Request Payload

{

 "chain_id": "860",

 ...,

 "session": {

 "expires": "20190926173844",

 "session_token": "MCM6-27651198-b49c-456a-8d4b-9794c147708a"

 },

 ...

}

Response

10

3_2 Auth Token

Once you have successfully logged in and retrieved your Authorization token, you can utilize the Security

Tokens REST API to retrieve a Security Token. This security token is used to request a payment

transaction with ROAMpayX.

 Headers

Parameter Required Description

X-Roam-Token Yes
Session token from the login response. We use this to
identify the API caller and its permissions.

X-Roam-ApiVersion Yes Version of the API being used (e.g., 2.0.0).

X-Roam-ClientVersion Yes
Client version (can vary by application). This is set by
developers (e.g., 1.0.0).

X-Roam-TargetedUserName No
Used to specify a merchant or sub-merchant if
requesting on their behalf (permissions restrictions may
apply).

Content-Type Yes Content type (e.g., application/json).

Request URL:

 https://mcm.roamdata.com/wsapi/SecurityTokens

Request Headers

 X-Roam-Token: <session token from previous step>

 X-Roam-ApiVersion: 2.0.0

 X-Roam-ClientVersion: 1.0

 X-Roam-TargetedUserName: <merchant or sub-merchant username>

 Content-Type: application/json

Headers

11

 Request

Parameter Required Description

token_type Yes
The type of token being requested. When requesting a
security token, please pass the AccessToken value as
shown in the example.

targeted_platform Yes
Used to specify the platform on which you are performing
the request.

If the request is successful, you should receive a response that includes your security token. Please see

below for an example of a successful response.

 Response

Parameter Required Description

token Yes
Security token used to handshake with RPX for
performing payment-related transactions.

expires Yes

Timestamp of when the security token expires

 (yyyymmddhhmmss).

Please note: This token expires 20 seconds after the
request is made.

Request

{

 "token_type" : “AccessToken”,

 "targeted_platform" : “Android "

}

Request Payload

{

 "token" : "MCM6-f601ecc7-95ba-4f6d-8682-1b5bcad1e435",

 "expires": "20190926173844"

}

Response

12

3_3 Starting a Payment

Add code to start a payment in the web application. Payment transactions are initiated via a URL link that

will open the RPX application installed on the device. The link URL is created using transaction

information as well as the security token retrieved in Step 3_2.

Before the transaction can be started, ROAMpay X will use the auth token to login on behalf of the

merchant/submerchant. However, the "login strategy" field can be added to the URL to indicate that

ROAMpay X should first require the merchant to connect with a reader so that the reader's serial number

can be used as the "targeted username".

a. Please note that all fields with the exception of amount and authToken are optional.

b. Definitions and enum values for the various fields can be found in the mPOS documentation. The

applicable mPOS documentation can be found here.

For example:

Starting a Payment Transaction

Parameter Required Validation Description

authToken Yes
length > 0 Security token used to handshake with RPX for

performing payment-related transactions.

amount Yes

Matches regex: "\d+",

and amount > 0,

and amount <=
10000000

Value of the transaction to be processed in
cents.

tip No
Matches regex: "\d+" Tip to be added to the transaction, input as a

value in cents.

tax No

matches regex:
"^\d{1,3}(\.\d{1,3})?$",

and tax >= 0,

and tax <=100

Tax to be added to the transaction, input as a
percentage.

invoiceID No
matches regex:

 "[a-zA-Z0-9]{0,15}"
Generated number to identify the invoice of
which to associate this transaction.

transactionNotes No
matches regex:

"[\\x20-\\x7E]{0,200}"
Any additional information or notes that you’d
like to associate with the transaction.

customReference
Number

No

matches regex:
"[-a-zA-Z0-9]{0,20}"

Custom reference identifier for the transaction.
Can be used to store additional reference data
with the transaction record, which can later be
retrieved.

loginStrategy No
"normal" or

"readerserialnumber"
The method for which you are logging into RPX.

tenderType No

“cash” or “keyed” or
“card” or

“keyedonpinpad”

If the tenderType parameter is not included then
the RPX app will open with the "Choose Tender"
screen. The choices offered on this screen are
the tender types received from MCM that are
allowed for the current merchant account.

https://www.developer.ingenico.us/

13

var URL = "https://assets.roamdata.com/transaction/" +
"loginStrategy=readerserialnumber&" +
"authToken=" + authToken + "&" +
"amount=" + amount + "&" +
"tip=" + tip + "&" +
"tax=" + tax + "&" +
"invoiceId=" + invoiceId + "&" +
"customReferenceNumber=" + customReferenceNumber + "&" +
"transactionNotes=" + transactionNotes + "&" + //transaction notes must be URL
encoded eg. test+transaction+note or test%20transaction%20note
"tenderType=" + tenderType
;
window.open(URL);

Example request to start a payment transaction

14

3_4 Handle Transaction Response

For a Web App invocation, ROAMpay X will POST the transaction response as a JSON payload to the

callback URL registered in Step 1 of Integration Section above.

In the case of a Native App, ROAMpay X will send the transaction response back as a JSON string as an

extra in the intent result. If a callback URL is also defined in this scenario, ROAMpay X will additionally

POST the response to the URL.

{

 "transactions": [

 {

 "responseCode": "0",

 "authorizedAmount": 1200,

 "authCode": "PPS322",

 "transactionId": "3027582",

 "invoiceId": "2505554",

 "clerkDisplay": "APPROVED",

 "clientTransactionId": "b7c9d915-83a6-4278-b037-c216263cf1ee",

 "transactionGroupId": "0810f572-ccdd-4841-9c6e-58b1c8cfbee4",

 "sequenceNumber": "398",

 "posEntryMode": "ContactEMV",

 "cardVerificationMethod": "Signature",

 "redactedCardNumber": "472409******6261",

 "cardExpirationDate": "2111",

 "availableBalance": 0,

 "submittedAmount": {

 "currency": "USD",

 "total": 1200,

 "subtotal": 1000,

 "tax": 100,

 "discount": 0,

 "tip": 100,

 "surcharge": 0

 },

 "tokenResponseParameters": {

 "tokenResponseCode": "Unknown"

 },

 "transactionGUID": "e6707885-eb5e-45bb-a86c-14981713df16",

 "transactionResponseCode": "Approved",

 "cardType": "VISA",

Insert Card Response

15

 "emvData": {

 "applicationIdentifier": "A0000000031010",

 "applicationLabel": "Visa DEBIT",

 "cryptogramType": "ARQC",

 "emvOfflineData": {

 "appCryptogram": "D0C91C71F2B777DB",

 "atc": "0031"

 }

 },

 "avsResponse": "Unknown",

 "uciFormat": "Unknown",

 "cardholderName": "SERVICES/MERCH F",

 "customerDisplay": "APPROVED",

 "batchNumber": "200218001",

 "transactionType": "CreditSale",

 "invoiceNumber": "testInvoice123",

 "customReference": "testCustomRef123",

 "transactionNotes": "test note"

 }

]

}

Insert Card Response (continued…)

{

 "transactions": [

 {

 "responseCode": "4945",

 "clerkDisplay": "Transaction Cancelled by User"

 }

]

}

Example Response for a Cancellation by the User

16

{

 "transactions": [

 {

 "responseCode": "6010",

 "clerkDisplay": "Reader Battery too low to complete payment"

 }

]

}

Example Response for a Cancellation Due to Low Reader Battery

{

 "transactions": [

 {

 "responseCode": "4995",

 "clerkDisplay": "Invalid or Expired Session"

 }

]

}

Example Response for an Invalid or Expired Session

{

 "transactions": [

 {

 "responseCode": "4999",

 "clerkDisplay": "Unknown Error"

 }

]

}

Example Response Pre-Login Errors

17

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 String response = data.getStringExtra("INTENTEXTRA_APPLINKRESPONSEJSON");

 if (resultCode == Activity.RESULT_OK) {

 // transaction was successfully processed

 } else if (resultCode == Activity.RESULT_CANCELED) {

 // transaction was not successfully processed

 }

}

Example to Retrieve a Transaction Response JSON via an Intent

{

 "transactions" : [

 {

 "responseCode": 4993

 "clerkDisplay": "Invalid Tender type",

 }

]

}

Example response for Invalid Tender Type

18

{

 "transactions": [

 {

 "responseCode": "0",

 "authorizedAmount": 1000,

 "authCode": "PPS323",

 "transactionId": "3027583",

 "invoiceId": "2505555",

 "clerkDisplay": "Balance due: $1500.00",

 "clientTransactionId": "91b09fd5-95da-413d-a37b-8b1a1c4aeb77",

 "transactionGroupId": "f9bda6c5-d718-4f73-ad09-7b51e4ca99b1",

 "sequenceNumber": "399",

 "posEntryMode": "ContactEMV",

 "cardVerificationMethod": "Signature",

 "redactedCardNumber": "472409******6261",

 "cardExpirationDate": "2111",

 "availableBalance": 0,

 "submittedAmount": {

 "currency": "USD",

 "total": 151000,

 "subtotal": 151000,

 "tax": 0,

 "discount": 0,

 "tip": 0,

 "surcharge": 0

 },

 "tokenResponseParameters": {

 "tokenResponseCode": "Unknown"

 },

 "transactionGUID": "93f2aae9-5137-4470-9f4e-bdb2cca396a0",

 "transactionResponseCode": "Approved",

 "cardType": "VISA",

 "emvData": {

 "applicationIdentifier": "A0000000031010",

 "applicationLabel": "Visa DEBIT",

 "cryptogramType": "ARQC",

 "emvOfflineData": {

 "appCryptogram": "CDC8A583090EE042",

 "atc": "0032"

 }

 },

 "avsResponse": "Unknown",

 "uciFormat": "Unknown",

Example Response: Partial Auth, Decline and Reversal (1/3)

19

 "uciFormat": "Unknown",

 "cardholderName": "SERVICES/MERCH F",

 "customerDisplay": "Balance due: $1500.00",

 "batchNumber": "200218001",

 "transactionType": "CreditSale",

 "invoiceNumber": "testInvoice123",

 "customReference": "testCustomRef123",

 "transactionNotes": "test note"

 },

 {

 "responseCode": "0",

 "authorizedAmount": 0,

 "clientTransactionId": "0e7d7029-4930-4e58-a259-f3d4a61450f3",

 "posEntryMode": "Unknown",

 "cardVerificationMethod": "None",

 "redactedCardNumber": "",

 "cardExpirationDate": "",

 "availableBalance": 0,

 "submittedAmount": {

 "currency": "USD",

 "total": 150000,

 "subtotal": 151000,

 "tax": 0,

 "discount": 0,

 "tip": 0,

 "surcharge": 0

 },

 "tokenResponseParameters": {

 "tokenResponseCode": "Unknown"

 },

 "transactionResponseCode": "Declined",

 "cardType": "Unknown",

 "emvData": {

 "emvOfflineData": {}

 },

 "avsResponse": "Unknown",

 "uciFormat": "Unknown",

 "transactionType": "Unknown",

 "invoiceNumber": "testInvoice123",

 "customReference": "testCustomRef123",

 "transactionNotes": "test note"

 },

 {

Example Response: Partial Auth, Decline and Reversal (2/3)

20

 {

 "responseCode": "0",

 "authorizedAmount": 1000,

 "authCode": "PPS323",

 "transactionId": "3027584",

 "invoiceId": "2505555",

 "clerkDisplay": "APPROVED",

 "clientTransactionId": "1996b5bd-2e0c-4388-8701-623a4482a7af",

 "transactionGroupId": "3a8599cc-1acb-4c10-9eea-011c9657536d",

 "sequenceNumber": "400",

 "posEntryMode": "Keyed",

 "cardVerificationMethod": "None",

 "redactedCardNumber": "472409XXXXXX6261",

 "cardExpirationDate": "2111",

 "availableBalance": 0,

 "submittedAmount": {

 "currency": "USD",

 "total": 1000

 },

 "tokenResponseParameters": {

 "tokenResponseCode": "Unknown"

 },

 "transactionGUID": "a101d2c7-7137-477d-aefe-aaae55e03e4d",

 "transactionResponseCode": "Approved",

 "cardType": "VISA",

 "emvData": {

 "emvOfflineData": {}

 },

 "avsResponse": "Unknown",

 "uciFormat": "Unknown",

 "customerDisplay": "APPROVED",

 "batchNumber": "200218001",

 "transactionType": "CreditSaleVoid",

 "invoiceNumber": "testInvoice123",

 "customReference": "testCustomRef123",

 "transactionNotes": "test note"

 },

 {

 "responseCode": "4945",

 "clerkDisplay": "Transaction Cancelled by User"

 }

]

 }

Example Response: Partial Auth, Decline and Reversal (3/3)

21

3_5 Error Messages

If the validation fails, ROAMpay X will display an alert with an appropriate title and message mentioned
above and the user will be brought back to the calling app upon dismissing the dialog.

Scenario Error Message

If the account was not set up
properly with API support

Title: Invalid Configuration

Message: The callback URL for the user has not been
configured. Please contact ROAMsupport

Button: Cancel Transaction

If the version of Google Play
Services is too low.

Title: Device Configuration Check Failed

Message: Payment transaction cannot continue. An update to
Google Play Services is required. Tap on the system notification
or visit Google Play for details.

Button: Cancel Transaction

If the Android device boot loader
is not locked, or

If the Android device does not
have a clean factory ROM, or

If there's a network error, or

If the device integrity check fails
for some other reason.

Title: Device Integrity Check Failed

Message: Could not verify device security and integrity

Button: Cancel Transaction

If the requested tender type is not
permitted for the current
merchant account.

Title: Cannot perform transaction.

Message: The requested tender type is not allowed for this
account. Please try a different tender type.

Button: Cancel Transaction

