
Machine Intelligence
Modern Infrastructure

http://mi2.live

Everything you want
to know about Istio

What is MI2?
MI2 Webinars focus on the convergence of machine
intelligence and modern infrastructure. Every alternate
week, I deliver informative and insightful sessions covering
cutting-edge technologies. Each webinar is complemented
by a tutorial, code snippets, and a video.

MI2 strives to be an independent and neutral platform for
exploring emerging technologies.

Register at http://mi2.live

Objectives
• Overview of service mesh
• Motivation to use Istio
• Istio architecture
• Demo
• Summary

Challenges with Microservices
• Based on polyglot development
• Highly distributed
• Difficult to debug
• Hard to implement logging and tracing
• Dynamic scale-in and scale-out
• Disparate protocols
• Implements internal and external load balancers

Challenges involved with Microservices

Service A

Service B

Service C

Service D

External
Service

Agent

Agent

Agent

AgentPython

Java

C#

Ruby

HTTP

HTTP/2

gRPC

GraphQL

L7

L4

Central Monitoring Service

What is a Service Mesh?
• Plugs itself into the intra-service communication
• Intercepts east-west (even north-south) traffic
• Captures telemetry related to services and traffic
• Adds an implicit security layer
• Enables service discovery
• Implements policy-driven routing and traffic management
• Interfaces well with legacy and modern infrastructure

Why Service Mesh?
• Out of process architecture
• Clean separation of data plane and control plane
• Support internal and external load balancing (L3/L4/L7)
• Consistent Service discovery
• Extensible protocol support
• Advanced health checks
• Real-time monitoring, logging, tracing
• Best practices of distributed computing

Service Mesh – Control Plane vs Data Plane

Service A

Service B

Service C

Service D

External
Service

Proxy

Proxy

Proxy

Proxy

Python

Java

C#

Ruby

HTTP

HTTP/2

gRPC

GraphQL

L7

L4

Control Plane

What is Istio?

•Connect
• Intelligent traffic routing and flow

•Secure
• Managed authentication, encryption

•Control
• Enforce policy-driven communication across services

•Observe
• Automatic tracing, monitoring, and logging

Istio – Control Plane vs. Data Plane

Service A

Service B

Service C

Service D

External
Service

Proxy

Proxy

Proxy

Proxy

Python

Java

C#

Ruby

HTTP

HTTP/2

gRPC

GraphQL

L7

L4

Istio Control Plane

Microservice 1

Microservice 2

Proxy

Proxy

Istio Control
Plane

Observability

Network
Management

Service
Discovery

Policy
Definition

Istio Building
Blocks

Istio
Architecture

Pilot: Control plane to configure and push service
communication policies.

Envoy: Network proxy to intercept communication
and apply policies.

Mixer: Policy enforcement with a flexible plugin
model for providers for a policy.

Citadel: Service-to-service auth[n,z] using mutual
TLS, with built-in identity and credential
management.

Galley: Configuration validation, distributionControl Plane API

Mixer

Service
A

Service
B

proxy proxy

HTTP/1.1, HTTP/2,
gRPC or TCP --
with or without

mTLS

Pilot Citadel

Config data
to Envoys TLS certs to

Envoys

Policy checks,
telemetry

Galley

Istio Architecture

Key Concepts of Istio Traffic Management
• VirtualService defines the rules that control how requests for a service are routed

within an Istio service mesh.

• DestinationRule configures the set of policies to be applied to a request after
VirtualService routing has occurred.

• ServiceEntry is commonly used to enable requests to services outside of an Istio
service mesh.

• Gateway configures a load balancer for HTTP/TCP traffic operating at the edge of
the mesh, most commonly to enable ingress traffic for an application.

• Sidecar configures one or more sidecar proxies attached to application workloads
running inside the mesh.

Istio Telemetry
• Metrics
• Logs
• Tracing
• Visualization

What are we deploying?

DEMO
• Installing Istio
• Configuring Traffic Rules
• Visualizing Telemetry

Summary
• Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic

• Fine-grained control of traffic behavior with rich routing rules, retries, failovers, and fault
injection

• A pluggable policy layer and configuration API supporting access controls, rate limits
and quotas

• Automatic metrics, logs, and traces for all traffic within a cluster, including cluster
ingress and egress

• Secure service-to-service communication in a cluster with strong identity-based
authentication and authorization

MI2
Sponsors

Next Webinar
Running Applications at the Edge with AWS Greengrass

AWS IoT Greengrass is software that lets you run local compute, messaging, data
caching, sync, and ML inference capabilities on connected devices in a secure way.
With AWS IoT Greengrass, connected devices can run AWS Lambda functions,
execute predictions based on machine learning models, keep device data in sync,
and communicate with other devices. This session will cover the fundamentals of
AWS Greengrass.

Thursday, May 16th, 2019
9:00 AM PST / 9:30 PM IST

Register at http://mi2.live

