
Panvala: Self-Organizing the 

Provision of Non-Rivalrous Goods 
Niran Babalola, Akua Nti, Daniel Schifano, Jacob Cantele, Romana Basilaris, and Isaac 

Kang 

 

June 26, 2019 

  



 

Introduction 3 

Economic Model 6 
Grants 6 
Donations 7 
The Token of Panvala 8 

Purposes of the Token 8 
Property Rights 8 
Principal-Agent Alignment 9 
Subsidiarity 9 

Unit of Account 10 
Initial Distribution 10 

The Token Capacitor 12 
Exponential Decay 12 

Creating the Lookup Table 13 
Locked and Unlocked Tokens 14 
Token Release Schedule 16 
Recording Donations 18 
Donation Strategies 18 

Slate Governance 19 
Design Goals 20 
Resources and Permissions 21 
Slates 22 

Incumbency 22 
Voting 23 

Ranked Choices and Runoffs 24 
Epochs 24 
The Parameter Store 25 

Initial Parameters 25 
Upgradeability 26 
Governance Demonstrations 27 
Error Recovery 28 

Future Work 29 
Generalized Staking 29 
Donation Credits 29 

The Panvala Community 30 
Panvala Launch Team 30 



ConsenSys 30 
Panvala Awards Committee 30 
Panvala Mark Council 31 
You 31 

Vision 31 

Appendix A: The Myth of Panvala 34 

Appendix B: Initial Sponsorship Program 35 

Appendix C: Initial Patron Program 35 

Appendix D: Related Work 37 
Fiscal Money 38 
Dominant Assurance Contracts 39 
Moloch DAO 39 
Bonding Curves 40 

  



Introduction 

No one knows who funded the creation of Bitcoin, but for every project that has stood 

on its shoulders, the path to take has become clear. The earliest new projects were 

trivial forks of Bitcoin, and were rewarded by mining early in the chain’s history. Later 

projects wrote their own codebases, and often “pre-mined” tokens to keep for 

themselves or sell to their funders. Ethereum itself held one of the first crowdsales to 

fund the creation of a new currency. 

 

Ethereum’s ability to execute arbitrary smart contracts led to an explosion of new 

token systems that used the same funding model, and several promising systems that 

started this way now seem on a credible path towards user adoption. Ethereum, 

however, has run into the limits of this model. While it’s a very effective strategy for 

launching new systems, sustaining these systems is still difficult. 

 

In the early days of Ethereum, many people worked on improving and building on top 

of the network because they felt that the Ether they held would become more useful as 

the network improved. Since then, the price has increased over 1000x, and that 

incentive has become less perceptible. At this point, it’s hard for any single team to 

feel like their work has any bearing on the demand for Ether, and the effects on the 

community have been significant. James Prestwich, the founder of a company that 

enables cross-chain transactions, has observed that “one of Ethereum's poorly 

understood weaknesses is it's inability to retain talent and experience over time.”  1

 

On December 18, 2018, Preston Van Loon, an engineer working on implementing 

Ethereum 2.0, aired his concerns on Twitter. “Our biggest distraction [at Prysmatic 

Labs] is that we are still working full time for other jobs. Even with recent grants, it’s 

hardly enough to take the whole team full time with significant pay cuts and it’s 

certainly not even for us to scale the team to where we need it.” In response, Vitalik 

Buterin tweeted “Just sent 1000 eth. Yolo.”  While the contribution was appreciated, 2

1 ​https://twitter.com/_prestwich/status/1129101755424362498 
2 ​https://twitter.com/vitalikbuterin/status/1075181710730506240?lang=en 

https://twitter.com/_prestwich/status/1129101755424362498
https://twitter.com/vitalikbuterin/status/1075181710730506240?lang=en


this “YOLO grant” of ether has 

become the clearest illustration of the 

absence of institutions in our 

community to provision public goods. 

If our roads were paved or our updates 

on each flu season were funded by 

one-off grants from individuals, we’d 

be rightly terrified. 

 

But beyond the risks posed by 

uncertain development funding, the threat of competition has loomed over our 

community for years. We’ve always known that Ethereum needed changes for scaling 

to accommodate the demand for smart contracts, and Ethereum loyalists haven’t been 

the only people with good ideas about how to do that. When faced with the choice of 

whether to cooperate with Ethereum or to compete with it, many teams with good 

ideas choose to compete. It’s far easier to reward workers and investors if you start 

your own blockchain—you can issue new tokens to whoever you want. If you improve 

Ethereum, how do you reward your team? 

 

Panvala was designed to solve this problem. We want it to be more rewarding to 

cooperate with the Ethereum community than it is to compete with it. To do this, 

we’ve built a system you can think of as a decentralized version of the Ethereum 

Foundation that runs on its own token. 

 

The Ethereum Foundation has faced regular barrages of criticism over the years, but 

Panvala was not built because the Ethereum Foundation has failed to achieve its goals. 

Panvala was built for the Ethereum Foundation to ​succeed​ at its goals. On May 21, the 

Ethereum Foundation updated the community about how it intends to use its funds, 

including a path towards future funding: 

 

We are also working to grow the Ethereum ecosystem’s funding base. This 

means encouraging other organizations besides the Foundation to support 

high-priority projects, and supporting innovative mechanisms for funding ... 



Efforts like these give us better leverage from our existing resources, and help 

build a sustainable path for funding vital projects far into the future.  3

 

The Ethereum Foundation’s remaining 600,000 ETH will not last forever, and the $30 

million that it intends to spend over the next year is roughly the same level of funding 

that competing projects are allocating even though those projects have not even 

launched live networks . That’s why we need Panvala’s ability to raise new funds and 4

act as a decentralized Ethereum Foundation. 

 

More abstractly, Panvala is a system that self-organizes the provision of 

non-rivalrous goods. Non-rivalrous goods are cheap to provide for each additional 

person, like a movie theater that isn’t at capacity or new research discoveries. For 

comparison, consider private goods: products that are hard to share, like a mobile 

phone or a toothbrush. Each individual pays for the private goods they can afford. 

Aided by government regulations, the marketplace self-organizes the provision of 

goods like these, so the supercomputers in our pockets and the cars we drive 

constantly get better, cheaper, and more efficient. But for non-rivalrous goods that 

can be shared, ​Panvala​ pays for what it can afford. It self-organizes the provision of 

shared goods, and constantly improves them to earn and retain the loyalty of the 

people who donate to it. 

Economic Model 

Grants 

Panvala grants are awarded to teams who work to fulfill the Ethereum vision with 

infrastructure and applications that the whole ecosystem depends on. Grants are 

issued using the system’s own token, so they can be issued from the first day of the 

system. The value of these early grants cannot be determined until there are people 

3 ​https://blog.ethereum.org/2019/05/21/ethereum-foundation-spring-2019-update/ 
4 ​https://etherscan.io/address/0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae 

https://blog.ethereum.org/2019/05/21/ethereum-foundation-spring-2019-update/
https://etherscan.io/address/0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae


who want to buy the tokens. The intended buyers of the granted tokens are donors 

who want to fund these ecosystem development projects. 

 

Panvala puts very few restrictions on grant issuance. 

 

1. The token has a fixed supply of 100 million tokens. 

2. The rate that donated tokens can be released is limited by ​the token capacitor​. 

3. The token holders must govern the issuance of grants using ​slate governance​. 

 

Other than these three restrictions, the token holders are free to structure their 

spending of released tokens however they would like. Since most non-equity funding 

in our community operates using grants, we’ve adopted that model as the default. 

However, the system can also accommodate a budget model, where teams receive 

recurring funding to perform an ongoing function, in addition to project-based grants 

to teams that pursue a variety of funding sources. 

Donations 

Panvala is designed to 

organize a flow of funds 

towards work that our 

community wants to 

support. While Panvala’s 

grants are issued to 

individual teams, 

donations are made to the 

system as a whole, not to 

individual projects. These 

donations are made using Panvala’s native tokens. Panvala’s tokens can be acquired 

with more liquid currencies like USD, KRW, and ETH, but Panvala has no ability to 

hold any currency other than its own. Donors buy tokens from teams who did work 

(directly from teams, or indirectly via exchanges) then donate those tokens back into 



the smart contract they came from. That’s what completes that cycle that makes 

Panvala sustainable. 

 

Buying tokens from a team that received a grant is necessary, but not sufficient to 

make a donation. A team that sells its tokens now has money to fund its work, but the 

buyer of the token has three options: donate the tokens back to the system, hold on to 

the tokens indefinitely to vote on Panvala’s decisions, or hold on to the tokens in 

order to sell the tokens later. When a donor buys resold tokens, their purchase does 

not fund any work. That’s why the purchase of tokens from a team is not considered a 

donation. The donation occurs when you deposit the tokens you acquired back into the 

system so they cannot be resold. 

 

The Panvala community recognizes the individuals and businesses who make 

donations to encourage more people to join them. Businesses who sponsor Panvala 

earn the community’s gratitude and attention based on the annual pledge required for 

their sponsorship package (see ​Appendix B: Initial Sponsorship Program​). Individual 

Panvala patrons are recognized by the size of the recurring donations they have 

pledged to make (see ​Appendix C: Initial Patron Program​). The benefits of these 

programs are fulfilled by token holders, grant recipients, and the whole Panvala 

community, not by the Panvala Launch Team. 

The Token of Panvala 

The token of Panvala is the ​pan​. When specifying amounts of pan, the 🍳 symbol 

(“cooking” emoji, U+1F373) is used before the amount. For instance, 🍳5000 might be 

required to stake on a slate, and a batch of grants might have 🍳2 million available. 

“PAN” is used to represent the token of Panvala when trading on exchanges or in any 

other context where a ticker symbol is useful, alongside USD, KRW, and ETH. When 

the full name of the token is needed (e.g “United States dollar” or “Korean won”), the 

token is the ​Panvala pan​. Pan is both singular and plural. 

 

Instead of coordinating donations by pooling money and spending it on workers, 

Panvala coordinates donations by issuing grants of its own tokens to workers. Donors 



buy those tokens and donate them back to the token capacitor. There is no way to 

donate dollars, won, or Ether directly to Panvala. Those currencies are used to acquire 

pan from workers and donate it back to the system. 

Purposes of the Token 

Property Rights 

Using property rights to organize cooperation makes it easy for people to do work and 

be rewarded for it without needing anyone’s approval to do so. As a result, people 

capable of improving property can identify themselves without needing to be 

recognized by a central planner. We’re familiar with how this plays out with land or 

intellectual property, and these same dynamics can be harnessed to organize the 

provision of public goods. 

 

A normal foundation hires donor development staff to increase the flow of donations 

into the organization. Instead of having a handful of donor development employees 

who are rewarded for increasing donations, Panvala can tap thousands or even 

millions of token holders, who can all be rewarded for increasing donations to the 

ecosystem. The more donations are made to the system, the more demand there is for 

the tokens held by the people recruiting more donors. Token holders have an incentive 

to tap their social networks to recruit more donors to fund the work we all care about. 

Principal-Agent Alignment 

Many donor-funded organizations are ineffective. The management of these 

organizations act as an agent for their donors, who expect them to maximize the good 

that can be done with their donation. However, since their effectiveness is hard to 

measure and often defined subjectively by a handful of large donors, the management 

of the organization can be far removed from any increases or decreases in their 

effectiveness compared to for-profit organizations where there are clearer measures 

of impact. It is notoriously difficult to solve principal-agent problems and get agents 

to act in the interests of their principals. 

 



In Panvala, pan holders are the agent for Panvala’s donors. Pan gives its holders a 

stake in the system’s future. If pan holders vote to issue grants effectively, they will 

grow the number and size of donations made to Panvala, which increases demand for 

the pan they hold. If they issue grants poorly, donations will decrease, as will demand 

for their holdings. As a result, we expect pan holders to be very responsive to the 

desires of current and potential donors, even though donors themselves don’t have 

votes in the system. 

Subsidiarity 

While each token gives influence over all of the system's actions, they also create a 

locus for subsidiarity to allow decision-making to be pushed down to lower levels of 

Panvala. Some organizations divide themselves by geography or by function, but we 

expect that the most effective way to divide Panvala will be by pools of staked tokens. 

Today, the individual donors to Panvala are recognized at the top level of the system, 

but in the future, it might be the staking pool those donations are assigned to that 

matters the most. Those staking pools can then be evaluated and recognized based on 

a function of the number of tokens in their pool and the size of the donation flow they 

have organized. 

Unit of Account 

Donations are measured in Panvala’s unit of account, not in pan. At launch, Panvala’s 

unit of account is equivalent to 1 USD, and while this remains true, we avoid 

mentioning the unit of account in favor of just using USD. However, we expect that 

Panvala’s unit of account will be adjusted over time to achieve stable values for as 

much of Panvala’s global community as possible. When that happens, the unit of 

account will be named by the token holders. 

Initial Distribution 

Panvala started issuing grants on February 1, 2019. At that point, 50 million pan were 

held in the token capacitor, and the remaining 50 million pan were reserved for 

distribution by the Panvala Launch Team. Through August 2, a total of 6,093,697 pan 



were issued in Batches One, Two and Three of grants, leaving 43,906,303 pan in the 

token capacitor. 

 

From the 50 million pan for the Panvala Launch Team to distribute, the team retains 

20 million pan. ConsenSys holds 5 million pan, plus another 5 million pan for projects 

at ConsenSys that the whole community can use, like MetaMask, Truffle, and the 

Burner Wallet. ConsenSys was allocated an additional 6 million pan, but chose to 

donate them back to the token capacitor for future grants. (As a result, the token 

capacitor will be initialized on chain with a balance of 49,906,303 pan.) 500,000 pan 

will be deposited in Uniswap, which is the default method for donors to acquire the 

tokens to donate. Advisors hold 3,500,000 pan. 

 

Launch partners hold the remaining 10 million pan. Launch partners are selected 

grant recipients from Batches One, Two, and Three who have committed to donate by 

earning or purchasing pan over the first two years of Panvala. They each have monthly 

donation targets that must be met for these tokens to be released, which can be made 

up to three months in advance. If they fall more than one month behind, the 

remaining tokens assigned to them will be donated to the token capacitor. 

 

All pan begins in the hands of people who have done work to fulfill the Ethereum 

vision. All pan other than grants are subject to vesting: one pan vests for each pan 

released from the token capacitor. 

 

Destination  Amount 

Grant Batches One, Two, and Three  🍳6,093,697 

Future Grants (Token Capacitor)  🍳43,906,303 

Future Grants (Donation from ConsenSys)  🍳6,000,000 

Launch Partners  🍳10,000,000 

Advisors  🍳3,500,000 

MetaMask, Truffle, and Other 
Infrastructure  🍳5,000,000 

ConsenSys  🍳5,000,000 

Panvala Launch Team  🍳20,000,000 

Uniswap  🍳500,000 

  🍳100,000,000 



 

 

The Token Capacitor 

The ​token capacitor​ is the smart contract that releases tokens for grants and accepts 

tokens as donations. The tokens in the capacitor are released at a rate that decays 

exponentially over time. Panvala’s token capacitor is configured with a half-life of 

1456 days (four 52-week years), like Bitcoin’s block reward decay. This half-life is 

informed by the practices of other digital currencies, as well as common practices for 

issuing shares of corporations. However, it’s still just a guess. We’ve hardcoded this 

value not because it’s definitely the right choice forever, but because we believe that 

making it easy to alter the release curve would deter participation. 

 

Withdrawing tokens from the token capacitor requires permission to be granted 

through the ​slate governance​ process. That process has its own timeline for granting 

permissions, but the token capacitor itself does not enforce restrictions on the timing 

of withdrawals. It only restricts the amount of tokens that can be withdrawn based on 



the balance after the last withdrawal or donation, the time of that change, and the 

amount of time that has elapsed since then. 

Exponential Decay 

The token capacitor releases tokens at rates such that its balance decays 

exponentially. Ideally, this decay would follow the formula for exponential decay: 

 

(t) N ( ) N =  0 2
1

t
t
2
1  

is the new balance,(t)  N  

is the previous balance, N 0  

 is the amount of time that has elapsed since tokens were last released, and t  

is the half life of the token capacitor, 1456 days. t
2
1  

 

However, since the floating point operations needed to implement this formula have 

determinism issues, it’s a poor fit for execution on a blockchain, where thousands of 

nodes need to agree on the result. The Ethereum Virtual Machine does not include 

floating point instructions for this reason. This leaves us two attractive approaches for 

implementing exponential decay: store a ​lookup table​ for pre-calculated values of 

for selected values of , or create a ​schedule​ of release rates to approximate) ( 2
1

t
t
2
1  t  

exponential decay with a piecewise function. 

 

It is easier to verify that a particular implementation of a piecewise schedule is free of 

any flaws that could throw off the supply policy of the system. Piecewise functions are 

deterministic, while attempting to approximate the curve more closely leads to 

behavior that depends on the prior sequence of balances and multipliers used from the 

lookup table.  In addition, since the goal of these smart contracts is to build consensus 

within a large community, it’s useful to be able to communicate exactly how many 

tokens should be released when using math that the public can do in their heads. 

Bitcoin’s block reward schedule also approximates exponential decay in this manner. 

 



However, Panvala’s token capacitor releases are based on the current balance, not the 

current time like Bitcoin. Bitcoin can read from the clock to determine how many 

halvings have occurred, but Panvala would have to store or calculate the balance 

boundaries for each release rate. With donations, the balance can fluctuate 

unpredictably, and any piecewise schedule implementation would have to account for 

releases that cross boundaries of the schedule. Together, these concerns increase the 

complexity of the implementation to a degree that accepting the flaws of the lookup 

table approach is the right tradeoff to make. 

Creating the Lookup Table 

To create the lookup table, we must first select the smallest time interval that the 

table will support. The smaller the interval, the larger the error from truncation that 

compounds with every iteration. To use these multipliers with integers, we must 

choose a precision level to multiply by before using the multiplier, then divide out the 

precision factor when we’re done. We’ve chosen one day as the smallest interval and 

 as our precision factor. Together, they produce an error of about 531 tokens1 × 1012  

out of 50,000,000 over one half life. 

 

We fill the rest of the lookup table with powers of two to be able to maintain more 

accuracy when more time has elapsed between the capacitor’s balance changes. 

However, we expect to achieve a flow of donations that exceeds one per day, which 

would cause the multiplier for one day to be used far more often than any other. 

 

Each time we multiply by a multiplier, any present error compounds. As a result, using 

multipliers for fewer elapsed days over and over releases slightly more tokens than 

performing fewer multiplications using multipliers for more elapsed days. 

 

Days 
Elapsed  Multiplier  Integer Multiplier 

Balance at 
Half-Life 

1  0.9995240507  999524050675  49,999,469 

2  0.9990483279  999048327879  49,999,733 

4  0.9980975614  998097561438  49,999,872 

8  0.9961987421  996198742149  49,999,937 

16  0.9924119339  992411933860  49,999,968 



32  0.9848814465  984881446469  49,999,981 

64  0.9699914636  969991463599  49,999,990 

128  0.9408834395  940883439455  49,999,995 

256  0.8852616466  885261646641  49,999,997 

512  0.783688183  783688183013  49,999,999 

1024  0.6141671682  614167168195  49,999,999 

2048  0.3772013105  377201310488  N/A 

 

Locked and Unlocked Tokens 

The total balance of the capacitor is divided between ​locked​ tokens and ​unlocked 

tokens. Unlocked tokens are the only ones that can be withdrawn, and locked tokens 

are the only tokens involved in decay calculations. Each time tokens are received or 

sent by the capacitor, we move tokens from the locked balance to the unlocked balance 

before​ adjusting to any request to deposit or withdraw tokens. If the unlocked balance 

were updated ​after​ a deposit, that new donation would be included in the balance of 

tokens to be decayed as if the tokens had been there since the last balance update. If 

the unlocked balance were updated after a withdrawal, withdrawal might be 

incorrectly rejected if the tokens to withdraw weren’t unlocked yet. 

 

A standalone function is available to sweep the appropriate number of locked tokens 

to the unlocked balance by the following method: 

 

1. Calculate the elapsed days since tokens were last unlocked. 

2. If the number of elapsed days is odd, multiply the locked balance by the lowest 

multiplier. Divide by the precision factor to determine the number of tokens 

that remain in the locked balance. 

3. Add the difference between the previous and new total of locked tokens to the 

balance of unlocked tokens in the contract’s storage. 

4. Divide the elapsed days by two, shift to the next multiplier, and repeat steps 

2-5 until no time is remaining. This will take  iterations, and will release(t)  log2  

tokens for up to 4095 days in one transaction. 

5. Store the difference between the total token balance of the contract and the 

balance of unlocked tokens as the new locked balance. 



6. Add the elapsed time to the last unlocked time. 

 

To illustrate the process more precisely as code, here is an excerpt from 

TokenCapacitor.sol​: 

 

    function calculateDecay(uint256 _days) public view returns(uint256) { 

        require(_days <= (2 ** decayMultipliers.length) - 1, "Time interval 

too large"); 

 

        uint256 decay = scale; 

        uint256 d = _days; 

 

        for (uint256 i = 0; i < decayMultipliers.length; i++) { 

           uint256 remainder = d % 2; 

           uint256 quotient = d >> 1; 

 

           if (remainder == 1) { 

                uint256 multiplier = decayMultipliers[i]; 

                decay = decay.mul(multiplier).div(scale); 

           } else if (quotient == 0) { 

               // Exit early if both quotient and remainder are zero 

               break; 

           } 

 

           d = quotient; 

        } 

 

        return decay; 

    } 

 

 

Anyone can send a transaction that unlocks tokens and advances the last unlocked 

time by a given number of days that is less than or equal to the total elapsed time since 



tokens were last unlocked. Multiple transactions will be needed to bring the contract 

up to date if 4096 days or more have elapsed since tokens were last unlocked. Before 

processing a donation or a withdrawal, this function is called within the same 

transaction to minimize the number of transactions needed to keep the capacitor state 

up to date. 

 

When permission has been granted to withdraw tokens, the number of unlocked 

tokens is reduced by the withdrawal amount. Withdrawals greater than the number of 

unlocked tokens revert the transaction. Donations are added directly to the locked 

token balance. 

Token Release Schedule 

For reference, an approximate schedule of the first eight years of token capacitor 

releases is included below. This schedule assumes that the calculations to release 

tokens from the capacitor are done once per quarter, when they will likely be done 

more often, leading to slight variances in the numbers of tokens released. Donations 

to the token capacitor are not considered in this time-based chart. As a reminder, the 

token capacitor actually releases based on its ​current balance​, not based on the ​current 

time​ as in Bitcoin. 

 

This chart can be used to consider donations by thinking of each donation as 

rewinding the token capacitor back in time by the equivalent number of tokens. 

Without donations, the balance of the capacitor moves down the curve at a predictable 

rate. Each donation restores the balance to an earlier point on the curve, so while the 

dates on this chart won’t match the balances in real life, you can look up the current 

balance on this chart to understand the current status of the system. 

 

  Epoch  Locked Tokens 
New Unlocked 
Tokens 

Allocated 
supply 

Quarterly 
Inflation 

Annualized 
Inflation 

2/1/2019  1  47,880,164  2,119,836  52,119,836  4.24%  18.07% 

5/3/2019  2  45,850,202  2,029,962  54,149,798  3.89%  16.51% 

8/2/2019  3  43,906,303  1,943,899  56,093,697  3.59%  15.15% 

11/1/2019  4  42,044,819  1,861,484  57,955,181  3.32%  13.95% 

1/31/2020  5  40,262,256  1,782,563  59,737,744  3.08%  12.88% 



5/1/2020  6  38,555,268  1,706,988  61,444,732  2.86%  11.93% 

7/31/2020  7  36,920,651  1,634,617  63,079,349  2.66%  11.07% 

10/30/2020  8  35,355,336  1,565,315  64,644,664  2.48%  10.30% 

1/29/2021  9  33,856,385  1,498,951  66,143,615  2.32%  9.60% 

4/30/2021  10  32,420,985  1,435,400  67,579,015  2.17%  8.97% 

7/30/2021  11  31,046,441  1,374,544  68,953,559  2.03%  8.39% 

10/29/2021  12  29,730,173  1,316,268  70,269,827  1.91%  7.86% 

1/28/2022  13  28,469,711  1,260,462  71,530,289  1.79%  7.37% 

4/29/2022  14  27,262,688  1,207,023  72,737,312  1.69%  6.92% 

7/29/2022  15  26,106,839  1,155,849  73,893,161  1.59%  6.51% 

10/28/2022  16  24,999,994  1,106,845  75,000,006  1.50%  6.13% 

1/27/2023  17  23,940,076  1,059,918  76,059,924  1.41%  5.77% 

4/28/2023  18  22,925,095  1,014,981  77,074,905  1.33%  5.45% 

7/28/2023  19  21,953,146  971,949  78,046,854  1.26%  5.14% 

10/27/2023  20  21,022,404  930,742  78,977,596  1.19%  4.86% 

1/26/2024  21  20,131,123  891,281  79,868,877  1.13%  4.59% 

4/26/2024  22  19,277,629  853,494  80,722,371  1.07%  4.34% 

7/26/2024  23  18,460,320  817,309  81,539,680  1.01%  4.11% 

10/25/2024  24  17,677,662  782,658  82,322,338  0.96%  3.90% 

1/24/2025  25  16,928,187  749,475  83,071,813  0.91%  3.69% 

4/25/2025  26  16,210,487  717,700  83,789,513  0.86%  3.50% 

7/25/2025  27  15,523,215  687,272  84,476,785  0.82%  3.32% 

10/24/2025  28  14,865,081  658,134  85,134,919  0.78%  3.15% 

1/23/2026  29  14,234,850  630,231  85,765,150  0.74%  2.99% 

4/24/2026  30  13,631,339  603,511  86,368,661  0.70%  2.84% 

7/24/2026  31  13,053,414  577,925  86,946,586  0.67%  2.70% 

10/23/2026  32  12,499,992  553,422  87,500,008  0.64%  2.57% 

 

Recording Donations 

Donations are recorded along with metadata to let the public know the context of the 

donation. In particular, it’s valuable for the public to know the donor’s intent and 

their view of the market when the donation was made. The current price of ETH/USD, 

current price of PAN/ETH, the intended donation in USD, and the terms of the pledge 

the donor intends to fulfill are useful context to record as metadata for donations. 



Donation Strategies 

The token capacitor coordinates donations in a new way that is difficult to reason 

about since no one has done it before. We’ve thought through a hypothesis of the 

dynamics that we expect to play out. 

 

Large, one-time donations have no effect on the long-term flow of donations, so they 

do not increase the system’s ability to fund work over the long run. It’s not much 

different from directly funding work as an individual, but Panvala’s goal is to build up 

a flow of funding that teams can count on. On the other hand, long-term 

commitments to recurring donations can change the flow of donations for an 

extended period of time, which allows more work to be rewarded using fewer tokens. 

Teams that expect Panvala to receive a steady flow of donations can stabilize their 

expectations of what the tokens can fund, which allows them to plan ahead to do work 

for the Ethereum ecosystem rather than finding private companies to hire them. 

 

Donors who are long-term token holders are faced with a choice: should they buy new 

tokens to donate, or should they donate from the tokens they already hold? While both 

options are valid donations, donating by reducing your long-term holdings of Panvala 

tokens has counterintuitive effects. The purchasing power of the next batch of grants 

is dependent on the flow of tokens acquired, not the balance of tokens in the token 

capacitor. Donations that add tokens to the token capacitor but don’t involve newly 

acquired tokens have no effect on the purchasing power of the system: the tokens 

released each quarter just allocate the value flowing into the system from workers and 

token buyers. The increase in tokens granted will be accompanied by a decrease in the 

token price if the flow of value to acquire tokens stays the same. 

 

To make the largest impact with your donations, view them as coming from your 

income rather than your holdings. Donate tokens immediately after acquiring them, 

whether you earned them directly for work, or purchased them from someone else. To 

make an impact with tokens you held onto, hold them indefinitely and use their voting 

power to steer the system. Ideally, make an impact in both ways: holding tokens to 



vote while donating regularly from your income has the largest positive impact on 

Panvala’s capacity to fund the work that you enjoy donating to. 

Slate Governance 

Panvala makes decisions using ​slate governance​. Each quarter, the system approves 

one slate of actions and all of the individual proposals it contains. Pan holders who 

don’t believe that a slate represents the consensus of the community can propose a 

competing slate of proposals. Pan must be staked on each proposed slate, and the 

tokens staked on losing slates are donated to the token capacitor.  

 

Each slate is associated with the ​recommender​ who authored the slate. While most 

on-chain decision-making systems involve approving or rejecting individual 

proposals, the main question we answer each quarter is “which decision-making 

process should we use?” The recommender of a slate always represents a particular 

decision-making process, even if it is poorly defined. When done well, recommenders 

make their decision-making process clear, and their recommended slate represents 

the output of that process. Some example processes for recommenders include voting 

off-chain, electing representative bodies, or relying on reputable authorities. 

Challenging individual proposals is done within the process that the recommender 

has already defined. Challenging a slate is like amending a constitution: you change 

the rules when they no longer serve the community’s goals, but not because you’re 

unsatisfied with a particular outcome. 

Design Goals 

Slate governance was designed to avoid common pitfalls we’ve seen in decentralized 

systems. The systems that have been deployed so far often see large numbers of 

decisions made, but low voter turnout has been a signal that token-based voting 

might not actually be rewarding the effort it takes to evaluate decisions. Other systems 

see too few decisions: Bitcoin has been famously resistant to change over the years, 

for better or for worse. We see this inertia as an emergent outcome of Bitcoin’s 



fork-based governance rules. The principles that justify resistance to change have 

been post hoc rationalizations of an emergent phenomenon. 

 

Fork-based governance has also made its way to on-chain systems. TheDAO was a 

fork-based organization in which token holders could fork off a new organization 

after any decision they didn’t want to cooperate with. (TheDAO was hacked before we 

could see whether its design would work .) Moloch DAO follows in TheDAO’s footsteps 5

with its “ragequit” functionality: during the waiting period after each approval, 

anyone can withdraw their remaining Ether if they don’t want to support the 

proposal. These designs make it easy to decide to join since there’s no real 

commitment, but their potential is constrained by the need to play it safe to keep 

people from leaving. Panvala avoids fork-based governance with the goal of building a 

committed community that cooperates even when they don’t get their way. 

 

On-chain voting has a poor track record. We believe it should be used as a mechanism 

of last resort rather than in the typical operation of a system. Our approach is similar 

to Plasma, a blockchain scaling strategy that builds child chains that can be entered 

and exited via a root contract. When a Plasma child chain is operating normally, very 

few transactions are sent on chain. When something goes wrong, that could trigger 

thousands of transactions to the root contract on the blockchain so people can remove 

their assets. Similarly, when everything is operating normally in Panvala, very few 

governance transactions are sent. During times of discord or attacks, thousands of 

transactions can be triggered for votes to be tallied to resolve the problem. 

Resources and Permissions 

Many designs for on-chain governance are oriented around approving transactions 

for a shared account to send, allowing token holders to collectively perform the same 

actions that a person can send a transaction to execute. Traditional multisignature 

wallets are the simplest form of this design, and Aragon DAOs are complex, 

token-based designs that control a single Aragon Agent that sends arbitrary 

transactions. Panvala avoids this design primarily to avoid becoming a shared pool of 

5 ​https://www.bloomberg.com/features/2017-the-ether-thief/ 

https://www.bloomberg.com/features/2017-the-ether-thief/


assets. Since Panvala cannot send transactions, it can’t hold any assets other than its 

own token. 

 

Instead of sending arbitrary transactions, Panvala’s ​resources​ allow anyone to request 

permission​ to interact with them. A resource is any smart contract (like the token 

capacitor) that defines permissions, which are then fed into the ​gatekeeper​ for 

approval. The gatekeeper contract is where token holders create slates of permission 

proposals, and vote on them if necessary. Resources call two functions on the 

gatekeeper: 

 

function​ requestPermission​(​bytes​ ​memory​ ​metadataHash​) ​public​ ​returns​(​uint​) 

function​ hasPermission​(​uint​ ​requestID​) ​public​ ​view​ ​returns​(​bool​) 

 

Resources store the permission identifier returned from ​requestPermission​ along 

with bookkeeping information about each permission request so they can check if the 

permission has been granted, ensure that one-time use permissions haven’t been 

used already, and execute the desired action. For instance, the token capacitor stores 

Proposal​ structures for each request to withdraw tokens: 

 

struct Proposal { 

    address gatekeeper; 

    uint tokens; 

    address to; 

    bytes metadataHash; 

    bool withdrawn; 

} 

 

Keeping track of the gatekeeper instance that was used for each proposal is 

particularly important to ensure that upgrades of the governance contracts go 

smoothly (see ​Upgradeability​). 



Slates 

A slate contains zero or more permission requests for a single resource. Slates are 

authored by recommenders, who can choose whether to stake pan on their slate to add 

it to the contest. If the recommender doesn’t stake on the slate, someone else must 

stake on it or the slate will be ignored. 

 

Each resource has its own set of slates that compete to approve permissions each 

quarter. As a result, each resource has a separate contest occurring each quarter. Some 

resources might trigger a vote during the same quarter that other resources have no 

contest. 

 

If a resource only has one staked slate during a quarter, that slate automatically wins, 

and its permissions are approved. 

 

Slates submitted without any permission requests to approve are called ​blank slates​. 

Recommending a blank slate is appropriate when the consensus of the token holders 

is to take no action for the quarter. 

Incumbency 

Recommenders represent an off-chain process for reaching consensus about which 

permissions to approve. Panvala highlights the identity of slate recommenders to 

focus the on-chain decision away from the merits of the permissions on a slate and 

towards the process by which those permissions were added to the slate. The 

recommender of the last successful slate for a resource is the ​incumbent​ for that 

resource. The incumbent is effectively the embodiment of the bylaws that are 

currently in effect. If the incumbent’s slate loses a contest, it’s not just their proposals 

that were rejected, it’s the implicit bylaws they represent that were rejected. Hopefully 

they were replaced by better bylaws. 

 

If no one submitted a slate for a quarter, the last incumbent persists. Incumbency can 

never be vacated. 



Voting 

Panvala uses a commit-reveal 

process to tally votes. During the 

commit phase, voters submit a 

hash of their vote, while keeping 

the vote itself and a random salt 

secret. During the reveal phase, 

no new commitments can be 

made, and earlier commitments 

can be revealed. This 

approximates the experience of 

typical elections where no 

running tally of votes is available 

until the polls close. 

 

Each token can be used to acquire one vote. To acquire voting rights, your tokens must 

be deposited in the gatekeeper contract before or during the commit phase, and 

cannot be withdrawn until the commit phase is over. This prevents the same tokens 

from being used to acquire multiple votes. Voters can delegate their votes to another 

Ethereum account. This allows voters to store the keys that control their tokens safely 

while delegating to a frequently-used key that cannot withdraw the tokens. 

 

If there is an active contest but no one votes, the default action is to reject all slates for 

that resource. 

Ranked Choices and Runoffs 

When a contest has two competing slates, the slate with more votes wins. When a 

contest has three or more competing slates, voters can indicate their first and second 

choices for slates. If any slate gets more than half of the first choice votes, that slate 

wins. Otherwise, all slates but the top two recipients of first choice votes are 



eliminated. Any second choice votes for the top two slates are counted for voters 

whose first choice was eliminated. The remaining slate with the most votes wins. 

 

Candidate  Round 1  Round 2 

Slate A  45 million  52 million 

Slate B  20 million   

Slate C  35 million  48 million 

 

An example runoff 

Epochs 

Each period of governance is called an ​epoch​, and lasts thirteen weeks. Epoch zero 

started on November 2, 2018 at 1700 UTC and ended with the issuance of Batch One of 

grants on February 1, 2019. 

 

Epoch Number  End of Epoch  Time (UTC)  Time (Austin, TX) 

0  2019-02-01  1700  11 am CST 

1  2019-05-03  1700  12 pm CDT 

2  2019-08-02  1700  12 pm CDT 

3  2019-11-01  1700  12 pm CDT 

4  2020-01-31  1700  11 am CST 

5  2020-05-01  1700  12 pm CDT 

6  2020-07-31  1700  12 pm CDT 

7  2020-10-30  1700  12 pm CDT 

8  2021-01-29  1700  11 am CST 

 

 

The first deadline within an epoch is the slate submission deadline. After this 

deadline, no more slates can be staked or recommended for the given resource. The 

hard deadline for slate submission is eleven weeks into an epoch, but to prevent slates 

from being snuck in at the last minute, a soft deadline starts 5.5 weeks into the epoch, 



and adjusts as slates are submitted. Each time a slate is staked for a resource, the soft 

deadline is reset to be halfway between the current time and the hard deadline, which 

makes the soft deadline approach the hard deadline with each slate submission. As a 

result, each resource can have a different soft deadline for slate submission. 

 

At the end of week 11, the voting commit period begins and lasts for one week. At the 

end of week 12, the voting reveal period begins and lasts for one week. Once the epoch 

has ended, no more votes can be revealed, so the contests can be finalized and 

permissions approved for the winning slates. Each permission request expires at the 

end of the following epoch. 

The Parameter Store 

The ​parameter store​ holds key-value pairs that are subject to Panvala’s governance 

process. The parameter store gives us a common API for proposing, approving, and 

executing changes to parameters instead of needing different functions to be called to 

change different parameters. This pattern was inspired by the “Parameterizer” 

contract from the original token-curated registry implementation.  6

Initial Parameters 

Parameter Name  Parameter 
Type 

Description  Value 

gatekeeperAddress address The address of the active 
gatekeeper contract used 
to govern Panvala. 

Determined at 
deploy-time 

slateStakeAmount uint The number of pan that 
must be staked in order for 
a slate recommendation to 
be considered by pan 
holders. 

50,000 pan 

archives bytes32 The git hash of the Panvala 
archives, which contain 
documents that have been 
endorsed through 

TBD. The initial 
repository will be 
hosted at 
https://github.com

6 ​https://github.com/skmgoldin/tcr/blob/master/contracts/Parameterizer.sol 

https://github.com/Panvala/archives
https://github.com/skmgoldin/tcr/blob/master/contracts/Parameterizer.sol


Panvala’s governance 
process. 

/Panvala/archives​. 

 

Upgradeability 

While the token capacitor and parameter store contracts cannot be changed, the 

gatekeeper contract is designed to be upgraded over time. Rather than the 

upgradeable contracts pattern popularized by OpenZeppelin and Aragon where a 

contract maintains its address and storage while the code changes, we use an older 

“EternalDB” pattern popularized by Peter Borah and the Colony team . In the latter 78

pattern, state is stored separately from code, and the address of the code that controls 

access to the state changes with each upgrade. 

 

Our “EternalDB” is the parameter store. Rather than having a modifiable owner that 

pushes authorized changes into the contract, the parameter store pulls changes from 

the gatekeeper contract, which is specified by a parameter as well. As long as the new 

gatekeeper contract follows the permissions API from the original contract, the new 

version can implement whatever decision-making logic that is needed. 

 

Updating the gatekeeper points all relevant contracts away from the old gatekeeper 

and towards the new one. Since the epoch in which the gatekeeper is changed can 

contain many other decisions as well, the upgrade approach taken by the community 

has significant potential effects. Permissions will function as expected during the 

transition as long as resources store the address of the active gatekeeper alongside 

each permission to ensure that permission lookups aren’t misdirected by gatekeeper 

upgrades. 

 

Token balances and delegations can be transferred by individual voters, but care must 

be taken to inform voters of the transition with enough time to prepare. Incumbents 

are harder to transfer: since the new gatekeeper must be deployed before the 

7 ​https://github.com/ConsenSys/dapp-store-contracts/blob/master/contracts/EternalDB.sol 
8 ​https://blog.colony.io/writing-upgradeable-contracts-in-solidity-6743f0eecc88/ 

https://github.com/Panvala/archives
https://github.com/ConsenSys/dapp-store-contracts/blob/master/contracts/EternalDB.sol
https://blog.colony.io/writing-upgradeable-contracts-in-solidity-6743f0eecc88/


permission has been granted to upgrade, the new gatekeeper won’t know the 

incumbents from that epoch unless it was written to be able to fetch them. 

 

In this context, gatekeeper upgrades have three options when it comes to 

transitioning state: they can do a ​clean break​ that loses incumbent data, they can ​fetch 

the incumbent data and anything else they’d like to transition in an initialization 

function on the new gatekeeper, or they can ​preserve all state​ using Merkle proofs or a 

new gatekeeper contract that uses an upgradability pattern that updates the code 

within a contract. If no other known contracts are using the incumbent data, clean 

break upgrades should be fine, but third-party contracts may have begun relying on 

the data without notifying you. Fetching the desired state to transition avoids 

breaking known or unknown contracts that rely on incumbent data. 

Governance Demonstrations 

The first demonstration of slate governance was performed by the Panvala Mark 

Council, a group of Ethereum community members that was appointed for this 

purpose. On October 25, 2018, the Panvala Mark Council convened to recommend 

issuing a Panvala Mark for a simple multisignature wallet smart contract.  9

 

The Panvala Awards Committee recommended slates of grants for three batches. They 

met on January 28, 2019 for Batch One , and on April 29 for Batch Two . They will 10 11

meet on June 25 to recommend grants for Batch Three. 

 

Videos are available for each of these meetings. 

9 ​https://medium.com/@Panvala/how-we-issued-a-panvala-mark-3f716b5fa910 
10 
https://medium.com/@Panvala/twelve-grants-awarded-in-batch-one-of-panvala-token-gr
ants-59b8df7422fe 
11 
https://medium.com/@Panvala/seven-grants-awarded-for-ethereum-2-0-and-scaling-tea
ms-in-panvalas-second-batch-626f74f0a3bb 

https://medium.com/@Panvala/how-we-issued-a-panvala-mark-3f716b5fa910
https://medium.com/@Panvala/twelve-grants-awarded-in-batch-one-of-panvala-token-grants-59b8df7422fe
https://medium.com/@Panvala/twelve-grants-awarded-in-batch-one-of-panvala-token-grants-59b8df7422fe
https://medium.com/@Panvala/seven-grants-awarded-for-ethereum-2-0-and-scaling-teams-in-panvalas-second-batch-626f74f0a3bb
https://medium.com/@Panvala/seven-grants-awarded-for-ethereum-2-0-and-scaling-teams-in-panvalas-second-batch-626f74f0a3bb


Error Recovery 

Smart contracts are rigid programs that are difficult and risky to modify after they 

have been deployed. Many contracts in other applications have had bugs and security 

flaws. While we’ve taken the best practice precautions to avoid these issues, it’s still 

possible that problems will arise that we haven’t foreseen. 

 

In the event of a serious error, the incumbent recommender for the token capacitor 

resource should make a recommendation for recovering from the error. In some cases, 

it might be easy to deploy fixed versions of the contracts with a new token that copies 

the balances at the time the error occurred. More complicated errors might be more 

difficult to recover from. 

 

Since Panvala only holds its own token, all errors can be recovered with a new instance 

of the system. Determining the initial state of that new instance is the hard part, and 

the incumbent recommender for the token capacitor should lead the community 

towards a consensus. 

Future Work 

Generalized Staking 

Panvala currently uses staking to allow access to quarterly ballots and penalize those 

who stake on losing slates. Staking is generally useful any time a system or its 

participants want to make it easy for people to earn their trust. In most existing 

systems, staking is governed by software, and your stake might be lost if you break the 

rules that the software enforces. Since Panvala’s staking is governed by people, they 

can create any rule sets they want and enforce them by voting on whether to burn the 

tokens, donate the tokens, or unlock the tokens for their owner to withdraw. 

 



We expect that one early use case for generalized staking will be certifications. Since 

this wave of decentralized systems is still young, it lacks much of the curation that 

users are accustomed to. The era of mass production brought about Consumer Reports 

to let people know what they could actually trust. The early internet era needed the 

Yahoo! Directory and the search engines that followed for people to know what was 

worth reading once everyone could be a publisher. 

 

Now that anyone can write smart contracts to manage and trade users’ assets, we 

need Panvala Mark, a Consumer Reports for smart contracts. Token holders can vote 

to approve certifications for contracts, require tokens to be staked, and slash those 

tokens if flaws in the contract are found. 

 

Beyond certifications, generalized staking can be used whenever the token holders 

desire the option to sanction someone as a condition for cooperating with them. 

Donation Credits 

The only way to earn status in Panvala today is by sacrificing some of your wealth to 

make a donation. We can introduce a new option by allowing businesses to donate on 

behalf of their customers. Businesses often offer their customers some of the value of 

their loyalty in an attempt to earn it. Instead of giving customers their tenth coffee 

free or frequent flyer miles to use on their next trip, businesses could offer Panvala 

donation credits using that same value. 

 

Businesses could acquire donation credits by making a donation directly, earning 

them from businesses they buy their raw materials from, or earning them when they 

buy from Panvala itself. Ads, sponsorships, or other opportunities offered by Panvala 

can give donation credits in return so Panvala donors can earn status by shopping 

with those businesses. In the end, all donations would be credited to individuals rather 

than businesses, as the actual burden of these donations (or any expense paid to 

attract customers) falls on individuals. 



The Panvala Community 

Panvala Launch Team 

Since July 2017, the Panvala Launch Team has been building Panvala at ConsenSys. 

The team consists of Niran Babalola, Romana Basilaris, Daniel Schifano, Jacob 

Cantele, Akua Nti, and Isaac Kang. 

ConsenSys 

ConsenSys is the home of the Panvala Launch Team. ConsenSys is a global blockchain 

technology company building the infrastructure, applications, and practices that 

enable a decentralized world. 

Panvala Awards Committee 

The Panvala Awards Committee made recommendations for the three batches of 

grants we’ve issued while building and testing the system. Its members were Pol 

Lanski, Evan van Ness, Bryant Eisenbach (Batch 1), and Eric Conner (Batches 2 and 3). 

Panvala Mark Council 

The Panvala Mark Council was convened to demonstrate slate governance by deciding 

whether to recommend a Panvala Mark for a smart contract. Its members were Mark 

Beylin, Ameen Soleimani, Alex Chapman, Joe Urgo, Chris Smith, and Jonathan George. 

You 

The most important part of the Panvala community is people like you. We want to 

hear why you’re going to donate, what’s stopping you from donating, or what you’d 

change about the system. We built this system for you: without donors, Panvala is 



lifeless code that will be abandoned. With you, Panvala is the tool that will unlock the 

power we’ve always had, and use it to fulfill the dreams we share for our future. 

Vision 

By Niran Babalola 

 

In February of 2018, ConsenSys held its 

second company retreat in Albufeira, 

Portugal. That week, we played a game that 

was a prototype of Panvala. Instead of tokens 

on a blockchain, we used poker chips, and 

instead of smart contracts enforcing the 

rules, we had a gamemaster. But the core of 

the system was the same: tokens were issued 

to people who pursued our shared goals, and 

donors bought those tokens in the hallways 

of the resort so they could deposit them back 

into the token capacitor: a metal can full of 

poker chips. 

 

What excites me most about launching 

Panvala is that more people will be able to feel what a few players felt that week as 

they played the game. There isn’t a word to describe how the game makes you 

feel—it’s not a common enough feeling to have earned a name yet. But after you feel 

that nameless feeling, the feeling that follows will be familiar, and it has a name we all 

know: that feeling is hope. 

 

Ethereum can be—and should be—the settlement layer for the world’s open financial 

system. While that future isn’t guaranteed, I’m confident that with the right tools, 

this will be one of many goals our community achieves together. After all, we’re the 

people who demonstrated that smart contracts could be usefully deployed on public 

networks when many doubted that it was possible. When TheDAO hack put 14% of all 



Ether at risk, we’re the people who endured the turmoil of the hard fork to protect the 

future of the network. And when everyone thought scammy ICOs were all that 

Ethereum was good for, we kept building through the crypto winter to make sure that 

the next time the public pays attention, they’ll see things that used to be impossible. 

 

I expect that Panvala will work, but that doesn’t mean that it should never be changed. 

Panvala wasn’t built to serve any ideology, or to unintentionally create a new one 

based on the quirks of the system we’ve built. Some of the system is based on 

assumptions and shortcuts that seem fine now, but might not be in the future. In 

some areas, we’ve intentionally made the system hard to change, not because we 

know better than you, but because no one wants to start playing a new game where 

critical rules are easy to change. I hope that these constraints serve you well, and if 

time and experience teach you more than we know now, that you free yourself from 

those constraints. 

 

I believe (perhaps irrationally) that Panvala truly is a more effective way to coordinate 

voluntary cooperation than we’ve ever seen. If that is true, there’s no way we’ll stop 

once we’ve solved the problems that currently face the Ethereum community. We’ll 

still be holding pan, so we’ll still want more people to want to make donations with 

pan. Rather than stop after our first goal, we will expand our mission to attract more 

patrons, more sponsors, and more donations. From where we are today, we’ll reach 

out to find anyone out there that might share the same goals and dreams for what we 

can accomplish together, and each day we’ll write the story of how we solved the 

problems that once seemed unsolvable. 

 

That's what the promise has been for the last technology that enabled permissionless 

innovation over the past few decades. Before the internet, you needed the money and 

connections to get AT&T’s permission to launch any new idea that relied on a network 

of connected people. After the internet, you could be any geek off the street coding in 

your poorly lit dorm room while wearing your latest free t-shirt, but if people really 

wanted the idea in your head, you could reach the world without any gatekeeper's 

approval. 

 



That's what I believe this technology will do for our economy, for our politics, and for 

our society. If you feel like you don't matter in today’s world that is dominated by 

unprecedented concentrations of power, I hope Panvala will be a revelation. 

 

You've always mattered. 

 

   



Appendix A: The Myth of Panvala 

In the beginning, there was a village on a river. Every aspect of life in the village 

depended on the river’s flow of water—but in the local language, they called water 

“​pan​.” They used pan to grow their crops, and to cook them into meals that were tasty 

to eat. They used pan to quench their thirst, especially while they played on hot days. 

They even played with pan itself: they splashed it, poured it, and threw it on each 

other when they least expected it. 

 

Pan flowed down to the village from the top of a mountain. The mountain was tall: so 

tall that it was frozen at the top. As the ice melted, it became the start of the river. The 

river grew and grew as it flowed down the mountain. Downstream, clouds picked up 

the pan and brought it back to the mountain. Clouds dropped snow at the top of the 

mountain, where one day it would melt and flow into the river again. 

 

One day, the weather changed for good. The clouds stopped coming back. Without the 

clouds, there was no snow at the top of the mountain. Without the snow on the 

mountain, there was less and less to melt for pan to flow into the river. As the river 

shrank, so did life in the village. Crops were harder to grow, and there was less tasty 

food to eat. There was less pan to drink, so on hot days, they had to stay inside. They 

couldn’t even play very much without pan: since they couldn’t splash it, pour it, or 

throw it on each other as often as they could before, there were fewer surprises to 

bring them joy. 

 

The leader of the village was determined to solve this problem. He headed to the top of 

the mountain day after day to try to figure out what was wrong, but each night he 

headed back to the village with nothing to show for it except more frustration on his 

face. The villagers began to feel sorry for him. One day, a group of villagers decided to 

surprise him on the mountain to cheer him up. It was a hot day, so they brought lots of 

pan with them for the climb up the mountain. 

 



When they got to the top, the leader of the village didn’t hear them coming. A villager 

quietly snuck up behind him. Once he got close enough, he poured pan all over his 

head. Everyone began to laugh as they threw more and more pan at the leader. The pan 

flowed down his face, soaked his clothes, and dripped to the frozen ground at the top 

of the mountain. As the pan they poured hit the ground, it began to freeze, too. 

 

That’s when they realized how they could solve their problem. They could do the same 

thing the clouds used to. They could bring pan back to the mountain where it would 

freeze and eventually melt into the river below. If they could bring pan up the 

mountain as fast as it flowed down, the river would never dry up. 

 

From that day forward, each villager did their part to keep the river flowing. After they 

grew crops, quenched their thirst, or even just played with pan, they’d collect as much 

pan as they could and take it back up the mountain, just like the clouds used to. Most 

people carried as much pan as they could fit in a backpack. The strongest villagers 

pulled carts loaded with pan to the top of the mountain. But everyone did as much as 

they could. They knew that if each villager kept going on their ​panvala​—their water 

journey—joy would never leave the village ever again. 

 

🏔  

Appendix B: Initial Sponsorship Program 

The details of the Initial Sponsorship Program will be finalized before Panvala is launched 

on the mainnet. To become a sponsor today, email info@panvala.com. 

Appendix C: Initial Patron Program 

Become a Panvala Patron today at Panvala.com. For future reference, screenshots of 

the donation page have been included here. 



 



 

Appendix D: Related Work 

Familiarity with the following ideas and projects will be useful for putting Panvala in 

context, but is not a prerequisite for understanding Panvala itself. 



Fiscal Money 

The 2007 financial crisis reverberated from America throughout the world, and 

triggered several aftershocks. In Greece, the financial crisis triggered a recession that 

stopped the flow of foreign capital into the country that had begun rising in earnest 

with its 2001 entry into the Eurozone. Its large, underreported debts became an even 

bigger problem with a slowing economy, and credit rating agencies downgraded Greek 

bonds in 2010. To avoid Greece defaulting on its bonds, the European Commission, 

European Central Bank, and the International Monetary Fund bailed out Greece with a 

loan conditioned on reductions in government spending. 

 

After a second bailout and a worsening recession, Yanis Varoufakis outlined a 

Bitcoin-powered payment system to ease the crisis in 2014 . He criticized the Bitcoin 12

currency as a path towards a deflationary spiral reminiscent of the Great Depression, 

but praised the blockchain technology that powers Bitcoin. Rather than using a 

blockchain to track a native, limited supply currency, this blockchain would manage 

“FT-coin”, where “FT” stands for “Future Taxes.” These coins would help Greece 

exit the recession imposed upon it by its creditors and the Euro by allowing the 

government more money to spend into the economy. Each FT-coin could be redeemed 

at the national treasury for its purchase price, or redeemed two years after issuance 

with the tax office for a premium on top of the face value. A €1000 FT-coin might be 

redeemable for €1500 of taxes two years later. FT-coins are removed from circulation 

when they are redeemed to pay taxes. 

 

This system reflects the viewpoint of Modern Monetary Theory, a way of looking at 

government finance that sees taxation not as a way of funding the government, but as 

a way of removing money from the economy to control inflation. When you pay taxes 

in FT-coin, you don’t directly fund the government: it will never spend the FT-coin 

you paid. You’re just providing the demand that prevents FT-coin from losing value. 

 

12 
https://www.yanisvaroufakis.eu/2014/02/15/bitcoin-a-flawed-currency-blueprint-with-a-p
otentially-useful-application-for-the-eurozone/ 

https://www.yanisvaroufakis.eu/2014/02/15/bitcoin-a-flawed-currency-blueprint-with-a-potentially-useful-application-for-the-eurozone/
https://www.yanisvaroufakis.eu/2014/02/15/bitcoin-a-flawed-currency-blueprint-with-a-potentially-useful-application-for-the-eurozone/


In January 2015, Greece held snap elections that swept the Syriza coalition to power 

for the first time on a platform of tearing apart the existing bailout deal to fight for 

better terms. Varoufakis was appointed as the Finance Minister. Over the months of 

negotiations for a new bailout deal, Varoufakis prepared a plan similar to FT-coin (but 

using a traditional database instead of a blockchain) in case talks failed. Instead, the 

prime minister decided to accept the creditors terms, and Varoufakis resigned. 

Dominant Assurance Contracts 

Assurance contracts have been popularized by Kickstarter and Groupon. They’re an 

agreement to make a purchase if enough other people make the same purchase. 

Assurance contracts are particularly useful for goods that have high fixed costs but 

low marginal costs, so they’re only worth buying for most people if the fixed costs can 

be spread among enough people. Many non-rivalrous goods fit this description. 

 

Dominant assurance contracts are a variant of that concept by Alex Tabarrok . In this 13

kind of “Kickstarter,” when the goal isn’t met, you are paid a specified amount. That 

payout is funded by an entrepreneur who bets on the goal being met. If he’s right, 

some of the funds raised go to pay him for the risk he took. 

 

Dominant assurance contracts avoid the wasted effort of contributing to a Kickstarter 

that doesn’t meet its goal. If the goal isn’t met, you get paid by the entrepreneur. If the 

goal is met, you got something you wanted to buy at a price you were willing to pay. In 

theory, this model gives entrepreneurs a playbook for organizing the provision of 

public goods while making a profit. 

Moloch DAO 

The unfortunately-named Moloch DAO is another effort to raise funds to spend on 

Ethereum development. Moloch DAO is an invite-only club that issues tokens 

proportionally to contributors of Ether. To “spend” Ether (ETH), tokens are issued to 

a worker without requiring any ETH to be deposited. The “ragequit” is key to its 

13 ​http://mason.gmu.edu/~atabarro/PrivateProvision.pdf 

http://mason.gmu.edu/~atabarro/PrivateProvision.pdf


incentive model: every proposal has a waiting period for execution, and if you disagree 

with the proposal, you can withdraw your share of ETH before the proposal executes. 

When the proposal’s new tokens are issued, there will be less ETH in the contract for 

them to withdraw. 

 

At the time of this writing, Moloch DAO holds over $2 million worth of ETH. 

Bonding Curves 

Bonding curves were invented in 2017 by Simon de la Rouviere . Bonding curves are 14

tokens with an algorithmic market maker built in from the start. Tokens can always be 

minted at a price that increases depending on the current supply of the token. Tokens 

can be burned for ETH (or any other collateral) at a price that decreases based on the 

supply of the token. Minting tokens fills a reserve that is used to buy back tokens as 

needed, but if a different curve with lower prices is used to buy back tokens, the 

difference in prices can be used to fund the goals of the system. In the general case, 

bonding curves incentivize early adoption of a token and the growth of its system. 

When the reserve is used to fund goods, bonding curves can theoretically incentivize 

the growth of a fund for arbitrary goods. 

 

Panvala does not use bonding curves, but comes from a similar line of thinking. 

14 
https://medium.com/@simondlr/tokens-2-0-curved-token-bonding-in-curation-markets-
1764a2e0bee5 

https://medium.com/@simondlr/tokens-2-0-curved-token-bonding-in-curation-markets-1764a2e0bee5
https://medium.com/@simondlr/tokens-2-0-curved-token-bonding-in-curation-markets-1764a2e0bee5

